Pixel Queue Algorithm for Geodesic Distance Transforms
Conference paper
Abstract
Geodesic distance transforms are usually computed with sequential mask operations, which may have to be iterated several times to get a globally optimal distance map. This article presents an efficient propagation algorithm based on a best-first pixel queue for computing the Distance Transform on Curved Space (DTOCS), applicable also for other geodesic distance transforms. It eliminates repetitions of local distance calculations, and performs in near-linear time.
Keywords
Queue Length Local Distance Geodesic Distance Priority Queue Sequential Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Borgefors, G.: Distance Transformations in Arbitrary Dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
- 2.Borgefors, G.: Distance Transformations in Digital Images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)CrossRefGoogle Scholar
- 3.Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)CrossRefGoogle Scholar
- 4.Borgefors, G., Hartmann, T., Tamimoto, S.L.: Parallell distance transforms on pyramid machines: theory and implementation. Signal Processing 21(1), 61–86 (1990)MATHCrossRefGoogle Scholar
- 5.Ikonen, L., Toivanen, P.: Shortest routes between sets on gray-level surfaces. In: Patter recognition and Image Analysis (PRIA), St. Petersburg, Russia, October 2004, pp. 244–247 (2004)Google Scholar
- 6.Ikonen, L., Toivanen, P.: Shortest routes on varying height surfaces using gray-level distance transforms. Image and Vision Computing 23(2), 133–141 (2005)CrossRefGoogle Scholar
- 7.Piper, J., Granum, E.: Computing Distance Transformations in Convex and Non-convex Domains. Pattern Recognition 20(6), 599–615 (1987)CrossRefGoogle Scholar
- 8.Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing. Journal of the Association for Computing Machinery 13(4), 471–494 (1966)MATHGoogle Scholar
- 9.Silvela, J., Portillo, J.: Breadth-first search and its application to image processing problems. IEEE Transactions on Image Processing 10(8), 1194–1199 (2001)MATHCrossRefGoogle Scholar
- 10.Soille, P.: Generalized geodesy via geodesic time. Pattern Recognition Letters 15(12), 1235–1240 (1994)CrossRefGoogle Scholar
- 11.Soille, P.: Morphological Image Processing: Principles and Applications, 2nd edn. Springer, Heidelberg (2003 and 2004.)MATHGoogle Scholar
- 12.Toivanen, P.: New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17, 437–450 (1996)CrossRefGoogle Scholar
- 13.Verwer, B.J.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm applied to distance transforms. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(4), 425–429 (1989)CrossRefGoogle Scholar
- 14.Vincent, L.: New trends in morphological algorithms. In: Proc. SPIE/SPSE, vol. 1451, pp. 158–170 (1991)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2005