How to Obtain a Lattice Basis from a Discrete Projected Space

  • Nicolas Normand
  • Myriam Servières
  • JeanPierre Guédon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3429)

Abstract

Euclidean spaces of dimension n are characterized in discrete spaces by the choice of lattices. The goal of this paper is to provide a simple algorithm finding a lattice onto subspaces of lower dimensions onto which these discrete spaces are projected. This first obtained by depicting a tile in a space of dimension n – 1 when starting from an hypercubic grid in dimension n. Iterating this process across dimensions gives the final result.

Keywords

Projection Matrix Discrete Space Riesz Basis Projection Direction Continuous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Conway, J.H., Sloan, N.J.A.: Sphere Packings, Lattices and Groups. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Harris, J.W., Stocker, H.: Handbook of Mathematics and Computational Science. Springer, Heidelberg (1998)MATHGoogle Scholar
  4. 4.
    Aldroubi, A., Unser, M.: Sampling procedures in function spaces and asymptotic equivalence with Shannonś sampling theory. Numer. Funct. Anal. and Optimiz. 15, 1–21 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Unser, M., Aldroubi, A., Eden, M.: Polynomial Spline Signal Approximations: Filter Desing and Assymptotic Equivalence with Shannonś Sampling Theorem. IEEE Transaction on Information theory 38, 95–103 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Guédon, J., Bizais, Y.: Separable and radial bases for medical image processing. SPIE lmage Processing 1898, 652–661 (1993)CrossRefGoogle Scholar
  7. 7.
    Guédon, J.P., Bizais, Y.: Bandlimited and Haar Filtered Back-Projection Reconstuction. IEEE Transaction on Medical Imaging 13, 430–440 (1994)CrossRefGoogle Scholar
  8. 8.
    Guédon, J.P., Unser, M., Bizais, Y.: Pixel Intensity Distribution Models for Filtered Back-Projection. In: Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nicolas Normand
    • 1
  • Myriam Servières
    • 1
  • JeanPierre Guédon
    • 1
  1. 1.IRCCyN/IVC, École polytechniqueUniversity of NantesNantes

Personalised recommendations