Theoroidal Maps as Algebraic Simulations

  • Narciso Martí-Oliet
  • José Meseguer
  • Miguel Palomino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3423)


Computational systems are often represented by means of Kripke structures, and related using simulations. We propose rewriting logic as a flexible and executable framework in which to formally specify these mathematical models, and introduce a particular and elegant way of representing simulations in it: theoroidal maps. A categorical viewpoint is very natural in the study of these structures and we show how to organize Kripke structures in categories that afterwards are lifted to the rewriting logic’s level. We illustrate the use of theoroidal maps with two applications: predicate abstraction and the study of fairness constraints.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrais, M., Fiadeiro, J.L.: Unifying theories in different institutions. In: Haveraaen, M., Dahl, O.-J., Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 81–101. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Centre de Recherches Mathématiques (1999)Google Scholar
  3. 3.
    Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E.: ELAN from a rewriting logic point of view. Theoretical Computer Science 285(2), 155–185 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruni, R., Meseguer, J.: Generalized rewrite theories. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 252–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Clavel, M.: The ITP Tool (2004),
  7. 7.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical Computer Science 285(2), 187–243 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude manual, version 2.1 (2004),
  9. 9.
    Colón, M.A., Uribe, T.E.: Generating finite-state abstractions of reactive systems using decision procedures. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 293–304. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: Gadducci, F., Montanari, U. (eds.) Proceedings Fourth International Workshop on Rewriting Logic and its Applications, WRLA 2002. ENTCS, vol. 71. Elsevier, Amsterdam (2002)Google Scholar
  11. 11.
    Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  12. 12.
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic: Roadmap and bibliography. Theoretical Computer Science 285(2), 121–154 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Martí-Oliet, N., Meseguer, J., Palomino, M.: Algebraic simulations (2004),
  16. 16.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)Google Scholar
  18. 18.
    Meseguer, J.: Localized fairness: a rewriting semantics (2004) (Paper in preparation)Google Scholar
  19. 19.
    Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 2–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some fundamental algebraic tools for the semantics of computation. Part 3: Indexed categories. Theoretical Computer Science 91(2), 239–264 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Narciso Martí-Oliet
    • 1
  • José Meseguer
    • 2
  • Miguel Palomino
    • 1
  1. 1.Departamento de Sistemas InformáticosUniversidad Complutense de Madrid 
  2. 2.Computer Science DepartmentUniversity of Illinois at Urbana-Champaign 

Personalised recommendations