New Layouts for Multi-stage Interconnection Networks

  • Ibrahim Cahit
  • Ahmet Adalier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3420)


In this paper, we present new layouts for the multi-stage interconnection networks such as shuffle, baseline and banyan networks that are suitable for photonic switching. In these new layouts, we decrease the number of crossovers of the stage links and crossovers between inlet-outlet of stages, which are known as the main bottleneck for the increase in switch capacity when it is realized for integrated photonic switching fabric.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giglmayr, J.: Planar Realization of All Optical Multiplayer Switching Fabrics. In: Proc. SPIE, vol. 3288, pp. 242–255 (1998)Google Scholar
  2. 2.
    Cahit, I., Giglmayr, J.: Recirculating Interconnection Networks: Directed Graph Representations, Routing, And Crossover Minimization. In: 1996 International Topical Meeting on Photonics in Switching, Sendai, PWC8, Japan, vol. 1 (1996)Google Scholar
  3. 3.
    Dhas, C., Konangl, V.K., Streetharan, M.: Broadband Switching: Architectures, Protocols, Design and Analysis. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  4. 4.
    Thylén, L., Karlsson, G., Nilsson, O.: Switching Technologies for Future Guided Wave Optical Networks: Potentials and Limitations of Photonics and Electronics. IEEE Communications Magazine 34(2), 106–113 (1996)CrossRefGoogle Scholar
  5. 5.
    Nishio, M., et al.: Photonic ATM Switch Using Vertical to Surface Transmission Electro-Photonic Devices (Vsteps), ISS XIV, B10.4, Yokohama, Japan (1992)Google Scholar
  6. 6.
    Sawano, T., et al.: High Capacity Photonic Switching System, ISS XIV, B9.4, Yokohama, Japan (1992)Google Scholar
  7. 7.
    Yanik, M.F., et al.: High Contrast All-Optical Bistable Switching in Photonic Crystal Microcavities. Applied Physics Letter 83(14), 2739–2741 (2003)CrossRefGoogle Scholar
  8. 8.
    Yanik, M.F., et al.: All-Optical Transistor Action in Photonic Crystal Cross Waveguide Geometry. Optics Letters, 2506–2508 (2003)Google Scholar
  9. 9.
    Lea, C.-T.: Crossover Minimization in Directional-Coupler-Based Photonic Switching Systems. IEEE Trans. on Communications 36(3), 355–363 (1988)CrossRefGoogle Scholar
  10. 10.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)Google Scholar
  11. 11.
    Hartsfield, N., Ringel, G.: Pearls in Graph Theory. Academic Press, Boston (1990)MATHGoogle Scholar
  12. 12.
    Guy, R.: Crossing Number of Graphs. Graph Theory and Applications, pp. 111–124. Springer, New York (1972)Google Scholar
  13. 13.
    Guoqiang, L., Yuceturk, E., Dawei, H., Esener, S.C.: Analysis of Free-Space Optical Interconnects for the Three-Dimensional Optoelectronic Stacked Processor. Optics Communications 202(4-6), 319–329 (2002)CrossRefGoogle Scholar
  14. 14.
    Guoqiang, L., Dawei, H., Yuceturk, E., Marand, P.J., Ozguz, V.H., Yue, L., Esener, S.C.: Three-Dimensional Optoelectronic Stacked Processor by use of Free-Space Optical Interconnection and Three-Dimensional VLSI Chip Stacks. Applied Optics 41(2), 348–360 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ibrahim Cahit
    • 1
  • Ahmet Adalier
    • 2
  1. 1.Department of Computer EngineeringNear East UniversityNicosiaCyprus
  2. 2.Department of Computer Information SystemsCyprus International UniversityNicosiaCyprus

Personalised recommendations