Potential Risks of Deploying Large Scale Overlay Networks

  • Maoke Chen
  • Xing Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3420)


In recent years, a variety of overlay networks are created over the Internet via virtual links. We investigate the impact of the virtual link configuration on the network capacity with a dual-layer lattice network model, focusing on the critical value of the input rate of user traffics. A mean-field theory suggests that the critical traffic is, approximately, inversely proportional to the average trip of virtual hops on the infrastructure. Simulations verify the analytic result and further show that the behavior of the overlay-physical network interactions is significantly divergent with different link configurations. Therefore, the optimization of virtual links will be conducive to improving the effectiveness of overlays.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woodburn, R.A., Mills, D.L.: Scheme for an internet encapsulation protocol: Version 1. RFC 1241, Internet Engineering Task Force (1991)Google Scholar
  2. 2.
    Provan, D.: Tunneling IPX traffic through IP networks. RFC 1234, Internet Engineering Task Force (1991)Google Scholar
  3. 3.
    Conta, A., Deering, S.E.: Generic packet tunneling in IPv6 specification. IETF RFC 2473 (1998)Google Scholar
  4. 4.
    Gilligan, R., Normark, E.: Transition mechanisms for IPv6 hosts and routers. IETF RFC 2893 (2000)Google Scholar
  5. 5.
    Albert, R., Barabási, A.L., Jeong, H., Bianconi, G.: Power-law distribution of the world wide web. Science 287, 2115a (2000)CrossRefGoogle Scholar
  6. 6.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Proceedings of ACM SIGCOMM (2001)Google Scholar
  7. 7.
    Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up data in p2p systems. Communications of the ACM (2003)Google Scholar
  8. 8.
    Deane, J., Smythe, C., Jefferies, D.: Self-similarity in a deterministic model of data transfer. Journal of Electronics 80, 677–691 (1996)CrossRefGoogle Scholar
  9. 9.
    Ohira, T., Sawatari, R.: Phase transition in a computer network traffic model. Physics Review E 58, 193–195 (1998)CrossRefGoogle Scholar
  10. 10.
    Fukś, H., Lawniczak, A.T.: Performance of data networks with random links. Mathematics and Computers in Simulation 51, 101–117 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen, M., He, T., Li, X.: A Mean-Field Theory of cellular automata model for distributed packet networks. In: Proceedings of ICOIN 2004, vol. I, pp. 372–381 (2004)Google Scholar
  12. 12.
    Sheng, Y.Z.: Queueing Theory and its Applications in Computer Communications (in chinese). Beijing University of Post and Telecommunication Press (1998)Google Scholar
  13. 13.
    Kleinrock, L.: Queueing Systems: Theory, vol. I. Jon Wiley & Sons, Chichester (1975)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maoke Chen
    • 1
  • Xing Li
    • 1
  1. 1.Network Research CenterTsinghua UniversityBeijingP.R. China

Personalised recommendations