An Architecture for Efficient QoS Support in the IEEE 802.16 Broadband Wireless Access Network

  • Dong-Hoon Cho
  • Jung-Hoon Song
  • Min-Su Kim
  • Ki-Jun Han
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3420)

Abstract

In this paper, we propose a new QoS architecture for the IEEE802.16a MAC protocol and present a bandwidth allocation and admission control policy for the architecture. Our architecture provides QoS support to real-time traffic with high priority while maintaining throughput performance to an acceptable level for low priority traffic. Analytical and simulation results assure advantages of our architecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wongthavarawat, K., Ganz, A.: Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. In: Military Communications Conference. IEEE, Los Alamitos (2003)Google Scholar
  2. 2.
    Chu, G., Wang, D., Mei, S.: A QoS architecture for the MAC protocol of IEEE 802.16 BWA system. In: Communications, Circuits and Systems and West Sino Expositions. IEEE, Los Alamitos (2002)Google Scholar
  3. 3.
    IEEE 802.16 Standard Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Systems, IEEE P802.16/D3-2001Google Scholar
  4. 4.
    Cao, Y., Vok, L.: Scheduling algorithms in broad-band wireless networks. Proceeding of the IEEE (2001)Google Scholar
  5. 5.
    IEEE Standard for Local and metropolitan area networks-Part 16: Air Interface for Fixed Broadband Wireless Access Systems-Amendment 2: Medium Access Control Modification and Additional Physical Layer Specifications for 2-11GHz, IEEE Standard 802.16a-2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dong-Hoon Cho
    • 1
  • Jung-Hoon Song
    • 1
  • Min-Su Kim
    • 1
  • Ki-Jun Han
    • 1
  1. 1.Department of Computer EngineeringKyungpook National UniversityKorea

Personalised recommendations