A Bandwidth Allocation Algorithm Based on Historical QoS Metric for Adaptive Video Streaming

  • Ling Guo
  • YuanChun Shi
  • Wei Duan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3420)


This paper introduces a dynamic bandwidth allocation algorithm in a video streaming multicast system. The approach is to introduce the vibration of received video quality into the QoS metric and make the receivers more negative in subscribing higher layers when bandwidth increases. A simulated annealing algorithm is applied in the server side to find the optimal allocation schema within the concurrent network situation at run time. Simulated experiments on NS-2 have been carried out to validate the algorithm. The result shows an improvement of 6.8 percents increase in received data rate and 6.0 percents decrease in data loss rate.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, J., Li, B., Zhang, Y.-Q.: Adaptive Video Multicast over the Internet. IEEE Multimedia 10(1), 22–31 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dai, M., Loguinov, D.: Analysis of Rate Distortion Functions and Congestion Control in Scalable Internet Video Streaming. In: Proceedings of the 13th international workshop on Network and operating systems support for digital audio and video (June 2003)Google Scholar
  3. 3.
    Johari, R., Tan, D.: End-to-End Congestion Control for the Internet: Delays and Stability. IEEE/ACM Transactions on Networking 9(6) (December 2001)Google Scholar
  4. 4.
    Liu, J., Li, B., Zhang, Y.-Q.: An End-to-End Adaptation Protocol for Layered Video Multicast Using Optimal Rate Allocation. IEEE Transaction on Multimedia 6(1) (February 2004)Google Scholar
  5. 5.
    Gilge, M., Gusella, R.: Motion video coding for packet-switching networks——an integrated approach. In: SPIE Conf. Visual Communications and Image Processing (November 1991)Google Scholar
  6. 6.
    Omori, Y., Suda, T., Lin, G., Kosugi, Y.: Feedback-based congestion control for VBR video in ATM networks. In: Proc. 6th Int. Workshop Packet Video (1994)Google Scholar
  7. 7.
    Sharon, C.M., Devetsikiotis, M., Lambadaris, I., Kaye, A.R.: Rate control of VBR H.261 video on frame relay networks. In: Proc. Int. Conf. Communications (ICC) (1995)Google Scholar
  8. 8.
    Vickers, B.J., Albuquerque, C., Suda, T.: Source-Adaptive Multilayered Multicast Algorithms for Real-Time Video Distribution. IEEE/ACM Transaction on Networking 8(6) (December 2000)Google Scholar
  9. 9.
    Rejaie, R., Handley, M.: Quality adaptation for congestion controlled video playback over the Internet. In: Proc. IEEE Infocom (March 1999)Google Scholar
  10. 10.
    Gili Manzanaro, J., Janez Escalada, L., Hernandez Lioreda, M., Szymanski, M.: Subjective image quality assessment and prediction in digital video communications. COST 212 HUFIS Report (1991)Google Scholar
  11. 11.
    Laoutaris, N., Stavrakakis, I.: Intrastream Synchronization for Continuous Media Streams: A Survey of Playout Schedulers. IEEE Transaction on Network 16(3), 30–40 (2002)CrossRefGoogle Scholar
  12. 12.
    Legout, A., Biersack, E.W.: PLM: Fast Convergence for Cumulative Layered Multicast Transmission Schemes. In: Proc. of ACM SIGMETRICS 2000, Santa Clara, CA, USA, June 2000, pp. 13–22 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ling Guo
    • 1
  • YuanChun Shi
    • 1
  • Wei Duan
    • 2
  1. 1.Key Laboratory of Pervasive ComputingTsinghua University 
  2. 2.China United Telecommunications Corporation 

Personalised recommendations