Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement

  • Stefan Ratschan
  • Zhikun She
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3414)


This paper deals with the problem of safety verification of non-linear hybrid systems. We start from a classical method that uses interval arithmetic to check whether trajectories can move over the boundaries in a rectangular grid. We put this method into an abstraction refinement framework and improve it by developing an additional refinement step that employs constraint propagation to add information to the abstraction without introducing new grid elements. Moreover, the resulting method allows switching conditions, initial states and unsafe states to be described by complex constraints instead of sets that correspond to grid elements. Nevertheless, the method can be easily implemented since it is based on a well-defined set of constraints, on which one can run any constraint propagation based solver. First tests of such an implementation are promising.


State Space Hybrid System Abstract State Constraint Propagation Interval Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin and Greenstreet [36]Google Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Benhamou, F.: Heterogeneous constraint solving. In: Proc. of the Fifth International Conference on Algebraic and Logic Programming (1996)Google Scholar
  5. 5.
    Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) revisited. In: International Symposium on Logic Programming, Ithaca, NY, USA, pp. 124–138. MIT Press, Cambridge (1994)Google Scholar
  6. 6.
    Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and Boolean constraints. Journal of Logic Programming 32(1), 1–24 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Wien (1998)MATHGoogle Scholar
  8. 8.
    Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager and van Schuppen [37], pp. 76–90Google Scholar
  9. 9.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. International Journal of Foundations of Computer Science 14(4) (2003)Google Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Cleary, J.G.: Logical arithmetic. Future Computing Systems 2(2), 125–149 (1987)Google Scholar
  12. 12.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12, 299–328 (1991) Also in [7]MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3), 281–331 (1987)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HyTech: hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790. Springer, Heidelberg (2000)Google Scholar
  16. 16.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata. Journal of Computer and System Sciences 57, 94–124 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hickey, T., Wittenberg, D.: Rigorous modeling of hybrid systems using interval arithmetic constraints. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)Google Scholar
  18. 18.
  19. 19.
    Hickey, T.J.: Analytic constraint solving and interval arithmetic. In: Proceedings of the 27th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (2000)Google Scholar
  20. 20.
    Hickey, T.J.: Metalevel interval arithmetic and verifiable constraint solving. Journal of Functional and Logic Programming 2001(7) (2001)Google Scholar
  21. 21.
    Hickey, T.J., van Emden, M.H., Wu, H.: A unified framework for interval constraint and interval arithmetic. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 250–264. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Berlin (2001)MATHGoogle Scholar
  23. 23.
    Lhomme, O.: Consistency techniques for numeric CSPs. In: Proc. 13th Intl. Joint Conf. on Artificial Intelligence (1993)Google Scholar
  24. 24.
    Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic optimization of interval narrowing algorithms. Journal of Logic Programming 37(1–3), 165–183 (1998)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)MATHCrossRefGoogle Scholar
  26. 26.
    Milner, R.: An algebraic definition of simulation between programs. In: Proc. of the 2nd International Joint Conference on Artificial Intelligence, pp. 481–489 (1971)Google Scholar
  27. 27.
    Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.: An algorithm for the approximative analysis of rectangular automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486. Springer, Heidelberg (1998)Google Scholar
  28. 28.
    Preußig, J., Stursberg, O., Kowalewski, S.: Reachability analysis of a class of switched continuous systems by integrating rectangular approximation and rectangular analysis. In: Vaandrager and van Schuppen [37]Google Scholar
  29. 29.
    Ratschan, S.: Continuous first-order constraint satisfaction. In: Calmet, J., Benhamou, B., Caprotti, O., Hénocque, L., Sorge, V. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, pp. 181–195. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Ratschan, S.: Rsolver (2004), Software package
  31. 31.
    Ratschan, S., She, Z.: Hsolver (2004), Software package
  32. 32.
    Stursberg, O., Kowalewski, S.: Analysis of controlled hybrid processing systems based on approximation by timed automata using interval arithmetic. In: Proceedings of the 8th IEEE Mediterranean Conference on Control and Automation, MED 2000 (2000)Google Scholar
  33. 33.
    Stursberg, O., Kowalewski, S., Engell, S.: On the generation of timed discrete approximations for continuous systems. Mathematical and Computer Models of Dynamical Systems 6, 51–70 (2000)MATHCrossRefGoogle Scholar
  34. 34.
    Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  35. 35.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin and Greenstreet [36]Google Scholar
  36. 36.
    Tomlin, C.J., Greenstreet, M.R. (eds.): HSCC 2002. LNCS, vol. 2289. Springer, Heidelberg (2002)MATHGoogle Scholar
  37. 37.
    Vaandrager, F.W., van Schuppen, J.H. (eds.): HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Ratschan
    • 1
  • Zhikun She
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations