Advertisement

Robust Polynomials and Quantum Algorithms

  • Harry Buhrman
  • Ilan Newman
  • Hein Röhrig
  • Ronald de Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3404)

Abstract

We define and study the complexity of robust polynomials for Boolean functions and the related fault-tolerant quantum decision trees, where input bits are perturbed by noise. We show that, in contrast to the classical model of Feige et al., every Boolean function can be computed by O(n) quantum queries even in the model with noise. This implies, for instance, the somewhat surprising result that every Boolean function has robust degree bounded by O(n).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48(4), 778–797 (2001); Earlier version in FOCS 1998zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A survey. Theoretical Computer Science 288(1), 21–43 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Feige, U., Raghavan, P., Peleg, D., Upfal, E.: Computing with noisy information. SIAM Journal on Computing 23(5), 1001–1018 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th ACM STOC, pp. 212–219 (1996)Google Scholar
  5. 5.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Iwama, K., Putra, R., Yamashita, S.: Quantum query complexity of biased oracles. Unpublished manuscript and talk at EQIS Conference (September 2003)Google Scholar
  7. 7.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  8. 8.
    Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: Dominant gate imperfection in Grover’s quantum search algorithm. Physical Review A 61, 042305 (2000)CrossRefGoogle Scholar
  9. 9.
    Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Computational Complexity 4(4), 301–313 (1994); Earlier version in STOC 1992zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Shenvi, N., Brown, K.R., Whaley, K.B.: Effects of a random noisy oracle on search algorithm complexity. Physical Review A 68, 052313 (2003)CrossRefGoogle Scholar
  11. 11.
    Szegedy, M., Chen, X.: Computing Boolean functions from multiple faulty copies of input bits. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 539–553. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Harry Buhrman
    • 1
    • 2
  • Ilan Newman
    • 3
  • Hein Röhrig
    • 4
  • Ronald de Wolf
    • 1
  1. 1.CWIAmsterdamthe Netherlands
  2. 2.ILLCUniversity of Amsterdamthe Netherlands
  3. 3.Dept. of Computer ScienceHaifa UniversityIsrael
  4. 4.Dept. of Computer ScienceUniversity of CalgaryCanada

Personalised recommendations