Advertisement

How Common Can Be Universality for Cellular Automata?

  • Guillaume Theyssier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3404)

Abstract

We address the problem of the density of intrinsically universal cellular automata among cellular automata or a subclass of cellular automata. We show that captive cellular automata are almost all intrinsically universal. We show however that intrinsic universality is undecidable for captive cellular automata. Finally, we show that almost all cellular automata have no non-trivial sub-automaton.

Keywords

cellular automata universality zero-one law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Symposium on Theoretical Aspects of Computer Science. LNCS, pp. 632–641. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Banks, E.R.: Universality in cellular automata. In: Eleventh Annual Symposium on Switching and Automata Theory, Santa Monica, California. IEEE, Los Alamitos (1970)Google Scholar
  3. 3.
    Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 318–330. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Mazoyer, J., Rapaport, I.: Inducing an Order on Cellular Automata by a Grouping Operation. In: Symposium on Theoretical Aspects of Computer Science. LNCS. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Ollinger, N.: Automates Cellulaires: structures. PhD thesis, École Normale Supérieure de Lyon (2002)Google Scholar
  6. 6.
    Albert, J., Čulik II, K.: A simple universal cellular automaton and its one-way and totalistic version. Complex Systems 1, 1–16 (1987)MATHMathSciNetGoogle Scholar
  7. 7.
    Theyssier, G.: Captive cellular automata. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 427–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17, 417–433 (1997)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Systems. Mathematical Systems Theory 3, 320–375 (1969)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mazoyer, J., Rapaport, I.: Global fixed point attractors of circular cellular automata and periodic tilings of the plane: undecidability results. Discrete Mathematics 199, 103–122 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mazoyer, J., Rapaport, I.: Additive cellular automata over Z p and the bottom of (CA, ≤ ). In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 834–843. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Guillaume Theyssier
    • 1
  1. 1.LIP (UMR CNRS, ENS Lyon, INRIA, Univ. Claude Bernard Lyon 1), École Normale Supérieure de LyonLYONFrance

Personalised recommendations