Formal Methods in Software and Systems Modeling pp 116-133

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3393)

Graph Transformation in Molecular Biology

  • Francesc Rosselló
  • Gabriel Valiente

Abstract

In the beginning, one of the main fields of application of graph transformation was biology, and more specifically morphology. Later, however, it was like if the biological applications had been left aside by the graph transformation community, just to be moved back into the mainstream these very last years with a new interest in molecular biology. In this paper, we review several fields of application of graph grammars in molecular biology, including: the modelling of higher-dimensional structures of biomolecules, the description of biochemical reactions, and the study of biochemical pathways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, N., Mamitsuka, H.: Predicting protein secondary structure using stochastic tree grammars. Machine learning 29, 275–301 (1997)MATHCrossRefGoogle Scholar
  2. 2.
    Beck, M., Benkö, G., Eble, C.F., Müller, S., Stadler, P.: Graph grammars as models for the evolution of developmental pathways. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 8–15. IOS Press, Amsterdam (2004)Google Scholar
  3. 3.
    Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. Journal of Chemical Information and Computer Sciences 43, 1085–1093 (2003)Google Scholar
  4. 4.
    Benkö, G., Flamm, C., Stadler, P.F.: Multi-phase artificial chemistry. In: Schaub, H., Detje, F., Brüggemann, U. (eds.) The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 16–22. IOS Press, Amsterdam (2004)Google Scholar
  5. 5.
    Benkö, G., Flamm, C., Stadler, P.F.: Generic properties of chemical networks: Artificial chemistry based on graph rewriting. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 10–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bower, J.M., Bolouri, H.: Computational modeling of genetic and biochemical networks. MIT Press, Cambridge (2001)Google Scholar
  7. 7.
    Brendel, V., Busse, H.G.: Genome structure described by formal languages. Nucleic Acid Research 12, 2561–2568 (1984)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L.: Brane calculi. In: Proc. Workshop Concurrent Methods in Molecular Biology. Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004) (to appear)Google Scholar
  9. 9.
    Cayley, A.: On the mathematical theory of isomers. Philosophical Magazine 47, 444–446 (1874)Google Scholar
  10. 10.
    Chan, H.S., Dill, K.A.: Compact polymers. Macromolecules 22, 4559–4573 (1989)CrossRefGoogle Scholar
  11. 11.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation. Part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1, pp. 163–246. World Scientific, Singapore (1997)Google Scholar
  12. 12.
    Culik II, K., Lindenmayer, A.: Parallel rewriting on graphs and multidimensional development. Int. Journ. of General Systems 3, 53–66 (1976)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Curti, M., Degano, P., Baldari, C.: Causal π-calculus for biochemical modelling. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 21–33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proc. Workshop Concurrent Methods in Molecular Biology. Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004) (to appear)Google Scholar
  15. 15.
    Danos, V., Laneve, C.: Graphs for core molecular biology. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 34–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Danos, V., Laneve, C.: Core formal molecular biology. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 302–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Deville, Y., Gilbert, D., van Helden, J., Wodak, S.J.: An overview of data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4, 246–259 (2003)CrossRefGoogle Scholar
  19. 19.
    Fringuelli, F., Taticchi, A.: The Diels-Alder Reaction: Selected Practical Methods. John Wiley & Sons, Chichester (2002)Google Scholar
  20. 20.
    Dittrich, P., Ziegler, J., Banzhaff, W.: Artificial chemistries—a review. Artificial life 7, 225–275 (2001)CrossRefGoogle Scholar
  21. 21.
    Durbin, R., Krogh., A., Mitchison, G., Eddy, S.: Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge Univ. Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  22. 22.
    Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rosenberg, G.: Computation in Living Cells: Gene Assembly in Ciliates. Natural computing series. Springer, Berlin (2004)MATHGoogle Scholar
  23. 23.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. part II: Single pushout approach and comparison with double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1, pp. 247–312. World Scientific, Singapore (1997) Google Scholar
  24. 24.
    Ehrig, H., Mahr, B.: Fundamentals of algebraic specification I: Equations and initial semantics. Springer, Heidelberg (1985)MATHGoogle Scholar
  25. 25.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analisys of biological signalling. In: Pacific symposium on Biocomputing 2001, pp. 400–412. World Scientific, Singapore (2001)Google Scholar
  26. 26.
    Fan, L.T., Bertók, B., Friedler, F.: A graph-theoretic method to identify candidate mechanisms for deriving the rate law of a catalytic reaction. Computers & Chemistry 26, 265–292 (2002)CrossRefGoogle Scholar
  27. 27.
    Félix, L., Rosselló, F., Valiente, G.: Artificial chemistries and metabolic pathways. In: Messeguer, X., Valiente, G. (eds.) Proc. 5th Annual Spanish Bioinformatics Conference, Barcelona, Technical University of Catalonia, pp. 56–59 (2004)Google Scholar
  28. 28.
    Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: Kinetic folding of RNA at elementary step resolution. RNA 6, 325–338 (2000)CrossRefGoogle Scholar
  29. 29.
    Fontana, W.: Algorithmic chemistry. In: Artificial Life II. Santa Fe Institute Studies in the Sciences of Complexity, vol. 47, pp. 159–210. Addison-Wesley, Reading (1992)Google Scholar
  30. 30.
    Fujita, S.: Description of organic reactions based on imaginary transition structures. Part 1-5. Journal of Chemical Information and Computer Sciences 26, 205–242 (1986)Google Scholar
  31. 31.
    Fujita, S.: Computer-Oriented Representation of Organic Reactions. Yoshioka Shoten, Kyoto (2001)Google Scholar
  32. 32.
    Fujita, S.: Description of organic reactions based on imaginary transition structures. Part 6-9. Journal of Chemical Information and Computer Sciences 27, 99–120 (1987)Google Scholar
  33. 33.
    Gernert, D.: Graph grammars as an analytical tool in physics and biology. Biosystems 43, 179–187 (1997)CrossRefGoogle Scholar
  34. 34.
    Goss, P., Peccoud, J.: Quantitative modelling of stochastic systems in molecular biology using stochastic Petri nets. Proc. Nat. Acad. Sc. 95, 6750–6755 (1998)CrossRefGoogle Scholar
  35. 35.
    Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 210–225. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188 (1994)CrossRefGoogle Scholar
  37. 37.
    Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27–30 (2000)CrossRefGoogle Scholar
  38. 38.
    Kister, A., Magarshak, Y., Malinsky, J.: The theoretical analysis of the process of RNA molecule self-assembly. BioSystems 30, 31–48 (1993)CrossRefGoogle Scholar
  39. 39.
    Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)CrossRefGoogle Scholar
  40. 40.
    Lesk, A.M.: Systematic representation of protein folding patterns. J. Mol. Graph. 13, 159–164 (1995)CrossRefGoogle Scholar
  41. 41.
    Mayoh, B.: On patterns and graphs (1995) (preprint) Google Scholar
  42. 42.
    Mayoh, B.: Multidimensional Lindenmayer organisms. In: L-systems. LNCS, vol. 15, pp. 302–326. Springer, Heidelberg (1974)Google Scholar
  43. 43.
    McAdams, H., Arkin, A.: It’s a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics 15, 65–69 (1999)CrossRefGoogle Scholar
  44. 44.
    McCaskill, J., Niemann, U.: Graph replacement chemistry for DNA processing. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 103–116. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  45. 45.
    Michal, G. (ed.): Biological Pathways: An Atlas of Biochemistry and Molecular Biology. John Wiley & Sons, New York (1999)Google Scholar
  46. 46.
    Polanski, O.: Graphs in quantum chemistry. MATCH 1, 183–195 (1975)Google Scholar
  47. 47.
    Priami, C. (ed.): Proc. 1st Int. Workshop Computational Methods in Systems Biology. LNCS, vol. 2602. Springer, Heidelberg (2003)Google Scholar
  48. 48.
    Przytycka, T., Srinivasan, T., Rose, G.: Recursive domains in proteins. Protein Science 11, 409–417 (2002)CrossRefGoogle Scholar
  49. 49.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π- calculus process algebra. In: Pacific symposium on Biocomputing 2001, pp. 459–470. World Scientific, Singapore (2001)Google Scholar
  50. 50.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  51. 51.
    Reidys, C., Stadler, P.F.: Bio-molecular shapes and algebraic structures. Computers & Chemistry 20, 85–94 (1996)CrossRefGoogle Scholar
  52. 52.
    Richardson, J.: β-sheet topology and the relatedness of proteins. Nature 268, 495–500 (1977)CrossRefGoogle Scholar
  53. 53.
    Rivas, E., Eddy, S.R.: The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16, 334–340 (2000)CrossRefGoogle Scholar
  54. 54.
    Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical graph transformation. In: Proc. 2nd Int. Workshop Graph-Based Tools. Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam (2004) (to appear)Google Scholar
  55. 55.
    Rosselló, F., Valiente, G.: Analysis of metabolic pathways by graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 70–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  56. 56.
    Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjolander, K., Underwood, R., Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research 22, 5112–5128 (1994)CrossRefGoogle Scholar
  57. 57.
    Schultz, J., Milpetz, F., Bork, P., Ponting, C.: SMART, a simple molecular architecture research tool. Proc. Nat. Acad. Sc. 95, 5857–5864 (1998)CrossRefGoogle Scholar
  58. 58.
    Searls, D.: The computational linguistics of biological sequences. In: Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press, Menlo Park (1993)Google Scholar
  59. 59.
    Searls, D.: Formal language and biological macromolecules. In: Mathematical Support for Molecular Biology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 47, pp. 128–141. AMS (1999)Google Scholar
  60. 60.
    Searls, D.: The language of genes. Nature 420, 211–217 (2002)CrossRefGoogle Scholar
  61. 61.
    Seo, H., Lee, D.Y., Park, S., Fan, L.T., Shafie, S., Bertók, B., Friedler, F.: Graphtheoretical identification of pathways for biochemical reactions. Biotechnology Letters 23, 1551–1557 (2001)CrossRefGoogle Scholar
  62. 62.
    Speroni, P.: Artificial chemistries. Bull. EATCS 76, 128–141 (2002)MATHGoogle Scholar
  63. 63.
    Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self reproduction. Physica D 171, 197–210 (2002)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Waterman, M.S., Smith, T.F.: RNA secondary structure: a complete mathematical analysis. Math. Biosci. 42, 257–266 (1978)MATHCrossRefGoogle Scholar
  65. 65.
    Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences 28, 31–36 (1988)Google Scholar
  66. 66.
    Weininger, D., Weininger, A., Weininger, J.L.: SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences 29, 97–101 (1989)Google Scholar
  67. 67.
    Weininger, D.: SMILES. 3. DEPICT. Graphical depiction of chemical structures. Journal of Chemical Information and Computer Sciences 30, 237–243 (1990)Google Scholar
  68. 68.
    Westhead, D., Slidel, T., Flores, T., Thornton, J.: Protein structural topology: automated analysis and diagrammatic representation. Protein Science 8, 897–904 (1999)CrossRefGoogle Scholar
  69. 69.
    Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph transformation system. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 83–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  70. 70.
    Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. Silico Biology 3, 323–345 (2003)Google Scholar
  71. 71.
    Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621 (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francesc Rosselló
    • 1
  • Gabriel Valiente
    • 2
  1. 1.Department of Mathematics and Computer Science, Research Institute of Health Science (IUNICS)University of the Balearic IslandsPalma de MallorcaSpain
  2. 2.Department of SoftwareTechnical University of CataloniaBarcelonaSpain

Personalised recommendations