Advertisement

Main Concepts of Networks of Transformation Units with Interlinking Semantics

  • Dirk Janssens
  • Hans-Jörg Kreowski
  • Grzegorz Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3393)

Abstract

The aim of this paper is to introduce a modelling concept and structuring principle for rule-based systems the semantics of which is not restricted to a sequential behavior, but can be applied to various types of parallelism and concurrency. The central syntactic notion is that of a transformation unit that encapsulates a set of rules, imports other transformation units, and regulates the use and interaction of both by means of a control condition. The semantics is given by interlinking the applications of rules with the semantics of the imported units using a given collection of semantic operations. As the main result, the interlinking semantics turns out to be the least fixed point of the interlinking operator. The interlinking semantics generalizes the earlier introduced interleaving semantics of rule-based transformation units, which is obtained by the sequential composition of binary relations as only semantic operation.

Keywords

Binary Relation Rule Base Transformation Unit Operational Closure Graph Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 155–213. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Ehrig, H., Kreowski, H.-J., Montanariand, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3. World Scientific, Singapore (1999)Google Scholar
  3. 3.
    Fernandez, C.: Non-sequential processes. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986, Part I. LNCS, vol. 254, pp. 95–115. Springer, Heidelberg (1987)Google Scholar
  4. 4.
    Kreowski, H.-J., Kuske, S.: On the interleaving semantics of transformation units – A step into GRACE. In: Cuny, J.E., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 89–108. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Kreowski, H.-J., Kuske, S.: Graph transformation units with interleaving semantics. Formal Aspects of Computing 11(6), 690–723 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kreowski, H.-J., Kuske, S.: Approach-independent structuring concepts for rule-based systems. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 299–311. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Kreowski, H.-J., Kuske, S., Schürr, A.: Nested graph transformation units. International Journal on Software Engineering and Knowledge Engineering 7(4), 479–502 (1997)CrossRefGoogle Scholar
  8. 8.
    Rozenberg, G.: Behaviour of elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986, Part I. LNCS, vol. 254, pp. 60–94. Springer, Heidelberg (1987)Google Scholar
  9. 9.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1. World Scientific, Singapore (1997)Google Scholar
  10. 10.
    Rozenberg, G., Salomaa, A. (eds.): The Book of L. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  11. 11.
    Rozenberg, G., Salomaa, A. (eds.): Lindenmayer Systems. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  13. 13.
    Thiagarajan, R.S.: Elementary net systems. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986, Part I. LNCS, vol. 254, pp. 26–59. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dirk Janssens
    • 1
  • Hans-Jörg Kreowski
    • 2
  • Grzegorz Rozenberg
    • 3
  1. 1.Department of Mathematics and Computer ScienceUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Mathematics and Computer ScienceUniversity of BremenBremenGermany
  3. 3.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations