Advertisement

Nested Constraints and Application Conditions for High-Level Structures

  • Annegret Habel
  • Karl-Heinz Pennemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3393)

Abstract

Constraints and application conditions are most important for transformation systems in a large variety of application areas. In this paper, we extend the notion of constraints and application conditions to nested ones and show that nested constraints can be successively transformed into nested right and left application conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H.: Constraints and application conditions: From graphs to high-level structures. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Ehrig, H., Habel, A.: Graph grammars with application conditions. In: Rozenberg, G., Salomaa, A. (eds.) The Book of L, pp. 87–100. Springer, Berlin (1986)Google Scholar
  3. 3.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive highlevel replacement categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory of typed attributed graph transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: Language and environment. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 551–603. World Scientific, Singapore (1999)Google Scholar
  6. 6.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26, 287–313 (1996)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Mathematical Structures in Computer Science 11(5), 637–688 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Heckel, R., Wagner, A.: Ensuring consistency of conditional graph grammars – a constructive approach. In: SEGRAGRA 1995. Electronic Notes in Theoretical Computer Science, vol. 2, pp. 95–104 (1995)Google Scholar
  9. 9.
    Immerman, N.: Relational queries computable in polynomial time. Information and Control 68(1-3), 86–104 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Koch, M., Parisi-Presicce, F.: Describing policies with graph constraints and rules. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 223–238. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Mahr, B., Wilharm, A.: Graph grammars as a tool for description in computer processed control: A case study. In: Graph-Theoretic Concepts in Computer Science, pp. 165–176. Hanser Verlag, München (1982)Google Scholar
  13. 13.
    Mosbah, M., Ossamy, R.: A programming language for local computations in graphs: Logical basis. Technical report, University of Bordeaux (2003)Google Scholar
  14. 14.
    Pennemann, K.-H.: Generalized constraints and application conditions for graph transformation systems. Master’s thesis, University of Oldenburg (2004)Google Scholar
  15. 15.
    Rensink, A.: Representing first-order logic by graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Annegret Habel
    • 1
  • Karl-Heinz Pennemann
    • 1
  1. 1.Carl v. Ossietzky University of OldenburgGermany

Personalised recommendations