Boundary Labeling: Models and Efficient Algorithms for Rectangular Maps

  • Michael A. Bekos
  • Michael Kaufmann
  • Antonios Symvonis
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


In this paper, we present boundary labeling, a new approach for labeling point sets with large labels. We first place disjoint labels around an axis-parallel rectangle that contains the points. Then we connect each label to its point such that no two connections intersect. Such an approach is common e.g. in technical drawings and medical atlases, but so far the problem has not been studied in the literature. The new problem is interesting in that it is a mixture of a label-placement and a graph-drawing problem.


  1. 1.
    Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. In: Proc. 11th ACM Symp. Comp. Geom (SoCG 1995), pp. 39–50 (1995)Google Scholar
  2. 2.
    Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: Models and efficient algorithms for rectangular maps. Technical Report 2004-15, Fakultät für Informatik, Universität Karlsruhe (2004), Available at
  3. 3.
    Chazelle, B., 36 co-authors: The computational geometry impact task force report. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, vol. 223, pp. 407–463. AMS (1999)Google Scholar
  4. 4.
    Fekete, J.-D., Plaisant, C.: Excentric labeling: Dynamic neighborhood labeling for data visualization. In: Proc. Conference on Human Factors in Computer Systems (CHI 1999), pp. 512–519. ACM, New York (1999)CrossRefGoogle Scholar
  5. 5.
    Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc. 7th ACM Symp. Comp. Geom (SoCG1991), pp. 281–288 (1991)Google Scholar
  6. 6.
    Freeman, H., Marrinan, S., Chitalia, H.: Automated labeling of soil survey maps. In: Proc. ASPRS-ACSM Annual Convention, Baltimore, vol. 1, pp. 51–59 (1996)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)Google Scholar
  8. 8.
    Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT 32, 249–267 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Iturriaga, C.: Map Labeling Problems. PhD thesis, University of Waterloo (1999)Google Scholar
  10. 10.
    Iturriaga, C., Lubiw, A.: Elastic labels around the perimeter of a map. Journal of Algorithms 47(1), 14–39 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Klau, G.W., Mutzel, P.: Automatic layout and labelling of state diagrams. In: Jäger, W., Krebs, H.-J. (eds.) Mathematics – Key Technology for the Future, pp. 584–608. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. B. G. Teubner (1990)Google Scholar
  13. 13.
    Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18, 1201–1225 (1989)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Wolff, A., Strijk, T.: The Map-Labeling Bibliography (1996),
  15. 15.
    Zoraster, S.: Practical results using simulated annealing for point feature label placement. Cartography and GIS 24(4), 228–238 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Michael Kaufmann
    • 2
  • Antonios Symvonis
    • 1
  • Alexander Wolff
    • 3
  1. 1.Dept. of MathematicsNational Technical University of AthensAthensGreece
  2. 2.Institute for Informatics, Sand 13University of TübingenTübingenGermany
  3. 3.Faculty of InformaticsKarlsruhe UniversityKarlsruheGermany

Personalised recommendations