Drawing the AS Graph in 2.5 Dimensions

  • Michael Baur
  • Ulrik Brandes
  • Marco Gaertler
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


We propose a method for drawing AS graph data using 2.5D graph visualization. In order to bring out the pure graph structure of the AS graph we consider its core hierarchy. The k-cores are represented by 2D layouts whose interdependence for increasing k is displayed by the third dimension. For the core with maximum value a spectral layout is chosen thus emphasizing on the most important part of the AS graph. The lower cores are added iteratively by force-based methods. In contrast to alternative approaches to visualize AS graph data, our method illustrates the entire AS graph structure. Moreover, it is generic with regard to the hierarchy displayed by the third dimension.


Graph Visualization Level Projection High Coreness Lower Core Hierarchical Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Batagelj, V., Zaveršnik, M.: Generalized cores. Preprint 799, University of Ljubljana (2002)Google Scholar
  2. 2.
    Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: BGPlay: A System for Visualizing the Interdomain Routing Evolution. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 295–306. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Baur, M., Brandes, U., Gaertler, M., Wagner, D.: Drawing the AS Graph in Two and a Half Dimensions. TR 2004-12, Informatics, University Karlsruhe (2004)Google Scholar
  4. 4.
    Brandes, U., Corman, S.: Visual unrolling of network evolution and the analysis of dynamic discourse. Information Visualization 2(1), 40–50 (2003)CrossRefGoogle Scholar
  5. 5.
    Brandes, U., Cornelsen, S.: Visual ranking of link structures. Journal of Graph Algorithms and Applications 7(2), 181–201 (2003)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Brandes, U., Dwyer, T., Schreiber, F.: Visual understanding of metabolic pathways across organisms using layout in two and a half dimensions. Journal of Integrative Bioinformatics 0002 (2004)Google Scholar
  7. 7.
    CAIDA. Walrus – graph visualization tool (2002)Google Scholar
  8. 8.
    CAIDA. Visualizing internet topology at a macroscopic scale (2003)Google Scholar
  9. 9.
    Eades, P., Feng, Q.: Multilevel visualization of clustered graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 113–128. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Fruchtermann, T., Reingold, E.: Graph drawing by force-directed placement. Software – Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  11. 11.
    Gaertler, M., Patrignani, M.: Dynamic analysis of the autonomous system graph. In: IPS 2004 – Inter-Domain Performance and Simulation (2004)Google Scholar
  12. 12.
    Gkantsidis, C., Mihail, M., Zegura, E.: Spectral analysis of internet topologies. In: IEEE Infocom 2003 (2003)Google Scholar
  13. 13.
    Sagie, G., Wool, A.: A clustering approach for exploring the internet structure. In: Proc. 23rd IEEE Conv. of Electrical and Electronics Engineers in Israel (2004)Google Scholar
  14. 14.
    Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–287 (1983)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Winick, J., Jamin, S.: Inet-3.0: Internet topology generator. Technical Report UM-CSE-TR-456-02, EECS, University of Michigan (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Baur
    • 1
  • Ulrik Brandes
    • 2
  • Marco Gaertler
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Department of Computer ScienceUniversity of KarlsruheKarlsruheGermany
  2. 2.Department of Computer & Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations