Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth

  • Erik D. Demaine
  • MohammadTaghi Hajiaghayi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

This paper surveys the theory of bidimensional graph problems. We summarize the known combinatorial and algorithmic results of this theory, the foundational Graph Minor results on which this theory is based, and the remaining open problems.

References

  1. [ABF+02]
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002) Google Scholar
  2. [AFF+01]
    Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosamond, F.A., Stege, U.: Refined search tree technique for DOMINATING SET on planar graphs. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 111–122. Springer, Heidelberg (2001) Google Scholar
  3. [AFN03]
    Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. J. Comput. System Sci. 67(4), 808–832 (2003) Google Scholar
  4. [AFN04]
    Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar graph problems. J. Algorithms 52(1), 26–56 (2004) Google Scholar
  5. [AGK+98]
    Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomialtime approximation scheme for weighted planar graph TSP. In: Proc. 9th ACMSIAM Symp. Discr. Alg., pp. 33–41 (1998) Google Scholar
  6. [AST90]
    Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. J. Amer. Math. Soc. 3(4), 801–808 (1990) Google Scholar
  7. [Bak94]
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41(1), 153–180 (1994) Google Scholar
  8. [CGP02]
    Chen, Z.-Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002) Google Scholar
  9. [CKL01]
    Chang, M.-S., Kloks, T., Lee, C.-M.: Maximum clique transversals. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 32–43. Springer, Heidelberg (2001) Google Scholar
  10. [DFHT]
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixedparameter algorithms for the (k, r)-center in planar graphs and map graphs (to appear); A preliminary version appears. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 829–844. Springer, Heidelberg (2003) Google Scholar
  11. [DFHT04a]
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional parameters and local treewidth (to appear); A preliminary version appears. In: LATIN 2004. LNCS, vol. 2976, pp. 109–118. Springer, Heidelberg (2004) Google Scholar
  12. [DFHT04b]
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. In: Proc. 15th ACM-SIAM Symp. Discr. Alg., pp. 823–832 (2004) Google Scholar
  13. [DH04a]
    Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth in minor-closed graph families, revisited. Algorithmica 40(3), 211–215 (2004) Google Scholar
  14. [DH04b]
    Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth and linear local treewidth and its algorithmic applications. In: Proc. 15th ACM-SIAM Symp. Discr. Alg., pp. 833–842 (2004) Google Scholar
  15. [DH04c]
    Demaine, E.D., Hajiaghayi, M.: Quickly deciding minor-closed parameters in general graphs. Manuscript (2004) Google Scholar
  16. [DH05a]
    Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT algorithms and PTASs. In: Proc. 16th ACM-SIAM Symp. Discr. Alg. (2005) (to appear) Google Scholar
  17. [DH05b]
    Demaine, E.D., Hajiaghayi, M.: Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality. In: Proc. 16th ACM-SIAM Symp. Discr. Alg. (2005) (to appear) Google Scholar
  18. [DHN+04]
    Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. J. Comput. System Sci. 69(2), 166–195 (2004) Google Scholar
  19. [DHT]
    Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors. Algorithmica (to appear); A preliminary version appears. In: ISAAC 2002. LNCS, vol. 2518, pp. 262–273. Springer, Heidelberg (2002) Google Scholar
  20. [DHT04]
    Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional theory of bounded-genus graphs. In: Proc. 29th Internat. Symp. Math. Found. Comput. Sci., pp. 191–203 (2004) Google Scholar
  21. [DJGT99]
    Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets and the excluded grid theorem. J. Combin. Theory Ser. B 75(1), 61–73 (1999) Google Scholar
  22. [ENZ00]
    Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000) Google Scholar
  23. [Epp95]
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In: Proc. 6th ACM-SIAM Symp. Discr. Alg., pp. 632–640 (1995) Google Scholar
  24. [Epp00]
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27(3-4), 275–291 (2000) Google Scholar
  25. [FG01]
    Frick, M., Grohe, M.: Deciding first-order properties of locally treedecomposable structures. Journal of the ACM 48(6), 1184–1206 (2001) Google Scholar
  26. [FHL04]
    Feige, U., Hajiaghayi, M., Lee, J.R.: On improving approximate vertex separator and its algorithmic applications. Manuscript (2004) Google Scholar
  27. [FL88]
    Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. Journal of the ACM 35(3), 727–739 (1988) Google Scholar
  28. [FRS87]
    Friedman, H., Robertson, N., Seymour, P.: The metamathematics of the graph minor theorem. In: Logic and combinatorics. Contemp. Math., vol. 65, pp. 229–261. Amer. Math. Soc., Providence (1987) Google Scholar
  29. [FT03]
    Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branchwidth and exponential speed-up. In: Proc. 14th ACM-SIAM Sympos. Discrete Algorithms, pp. 168–177 (2003) Google Scholar
  30. [GKL01]
    Gutin, G., Kloks, T., Lee, C.M.: Kernels in planar digraphs. In: Optimization Online (2001) Google Scholar
  31. [Gro03]
    Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23(4), 613–632 (2003) Google Scholar
  32. [HN02]
    Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation and graphs of (locally) bounded treewidth. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 305–318. Springer, Heidelberg (2002) Google Scholar
  33. [KLL02]
    Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint set on plane and planar graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002) Google Scholar
  34. [KP02]
    Kanj, I.A., Perković, L.: Improved parameterized algorithms for planar dominating set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410. Springer, Heidelberg (2002) Google Scholar
  35. [LT80]
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980) Google Scholar
  36. [Ree97]
    Reed, B.A.: Tree width and tangles: a new connectivity measure and some applications. In: Surveys in combinatorics. London Math. Soc. Lecture Note Ser., vol. 241, pp. 87–162. Cambridge Univ. Press, Cambridge (1997) Google Scholar
  37. [RS]
    Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B (to appear) Google Scholar
  38. [RS86a]
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986) Google Scholar
  39. [RS86b]
    Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B 41(1), 92–114 (1986) Google Scholar
  40. [RS93]
    Robertson, N., Seymour, P.: Excluding a graph with one crossing. In: Graph structure theory, pp. 669–675. Amer. Math. Soc. (1993) Google Scholar
  41. [RS95]
    Robertson, N., Seymour, P.D.: Graph minors. XII. Distance on a surface. J. Combin. Theory Ser. B 64(2), 240–272 (1995) Google Scholar
  42. [RS03]
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B 89(1), 43–76 (2003) Google Scholar
  43. [RST94]
    Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62(2), 323–348 (1994) Google Scholar
  44. [Tho98]
    Thorup, M.: Map graphs in polynomial time. In: Proc. 39th IEEE Sympos. Found. Comput. Sci., pp. 396–407 (1998) Google Scholar
  45. [Wag37]
    Wagner, K.: Über eine Eigenschaft der eben Komplexe. Deutsche Math. 2, 280–285 (1937) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • MohammadTaghi Hajiaghayi
    • 1
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA

Personalised recommendations