Graphael: A System for Generalized Force-Directed Layouts

  • David Forrester
  • Stephen G. Kobourov
  • Armand Navabi
  • Kevin Wampler
  • Gary V. Yee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


The graphael system implements several traditional force-directed layout methods, as well as several novel layout methods for non-Euclidean geometries, including hyperbolic and spherical. The system can handle large graphs, using multi-scale variations of the force-directed methods. Moreover, graphael can layout and visualize graphs that evolve though time, using static views, animation, and morphing. The implementation includes a powerful interface that allows the user to put together existing algorithms and visualization techniques, and to easily add new ones. The system is written in Java and is available as a downloadable program or as an applet at


  1. 1.
    Auber, D.: Tulip - a huge graph visualization framework. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 105–126. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Batagelj, V., Mrvar, A.: Pajek - analysis and visualization of large networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 77–103. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Bridgeman, S.S., Garg, A., Tamassia, R.: A graph drawing and translation service on the www. International Journal on Computational Geometry and Application 9(4–5), 419–446 (1999)CrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Eckersley, P.: Wilmascope - a 3d graph visualization system. In: Jünger, P., Mutzel, P. (eds.) Graph Drawing Software, pp. 55–75. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph animations with evolving layouts. In: 11th Symposium on Graph Drawing, pp. 98–110 (2003)Google Scholar
  6. 6.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Exploring the computing literature using temporal graph visualization. In: Visualization and Data Analysis, pp. 45–56 (2004)Google Scholar
  7. 7.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  8. 8.
    Gajer, P., Kobourov, S.G.: GRIP: Graph drawing with intelligent placement. Journal of Graph Algorithms and Applications 6(3), 203–224 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Jünger, M., Mutzel, P.: Graph Drawing Software. Springer, Heidelberg (2003)MATHGoogle Scholar
  10. 10.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kobourov, S.G., Wampler, K.: Non-Euclidean spring embedders. In: 10th Annual IEEE Symposium on Information Visualization, InfoVis (2004) (to appear)Google Scholar
  12. 12.
    Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 401–408 (1995)Google Scholar
  13. 13.
    Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–287 (1983)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Wiese, R., Eiglsperger, M., Kauffmann, M.: yfiles - visualization and automatic layout of graphs. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 173–192. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Forrester
    • 1
  • Stephen G. Kobourov
    • 1
  • Armand Navabi
    • 1
  • Kevin Wampler
    • 1
  • Gary V. Yee
    • 1
  1. 1.Department of Computer ScienceUniversity of Arizona 

Personalised recommendations