Visual Navigation of Compound Graphs

  • Marcus Raitner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


This paper describes a local update scheme for the algorithm of Sugiyama and Misue (IEEE Trans. on Systems, Man, and Cybernetics 21 (1991) 876–892) for drawing views of compound graphs. A view is an abstract representation of a compound graph; it is generated by contracting subgraphs into meta nodes. Starting with an initial view, the underlying compound graph is explored by repeatedly expanding or contracting meta nodes. The novelty is a totally local update scheme of the algorithm of Sugiyama and Misue. It is more efficient than redrawing the graph entirely, because the expensive steps of the algorithm, e. g., level assignment or crossing minimization, are restricted to the modified part of the compound graph. Also, the locality of the updates preserves the user’s mental map: nodes not affected by the expand or contract operation keep their levels and their relative order; expanded edges take the same course as the corresponding contracted edge.


  1. 1.
    Sugiyama, K., Misue, K.: Visualization of structural information: Automatic drawing of compound digraphs. IEEE Trans. on Systems, Man, and Cybernetics 21, 876–892 (1991)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Eades, P., Feng, Q.W.: Multilevel visualization of clustered graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Buchsbaum, A.L., Westbrook, J.R.: Maintaining hierarchical graph views. In: Proc. 11th SODA, pp. 566–575 (2000)Google Scholar
  4. 4.
    Raitner, M.: Dynamic tree cross products. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 793–804. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages and Computing 6, 183–210 (1995)CrossRefGoogle Scholar
  6. 6.
    Sander, G.: Graph layout for applications in compiler construction. TCS 217, 175–214 (1999)MATHCrossRefGoogle Scholar
  7. 7.
    Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    North, S.C., Woodhull, G.: Online hierarchical graph drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 232–246. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Shieh, F.S., McCreary, C.L.: Clan-based incremental drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 384–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Huang, M.L., Eades, P.: A fully animated interactive system for clustering and navigating huge graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 374–383. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Abello, J., Korn, J.: MGV: A system for visualizing massive multigraphs. IEEE Trans. on Visualization and Computer Graphics 8, 21–38 (2002)CrossRefGoogle Scholar
  12. 12.
    Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range searching over tree cross products. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 120–131. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Raitner, M.: HGV: A library for hierarchies, graphs, and views. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 236–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcus Raitner
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations