Improved Bounds for the Number of (≤ k)-Sets, Convex Quadrilaterals, and the Rectilinear Crossing Number of Kn

  • József Balogh
  • Gelasio Salazar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

We use circular sequences to give an improved lower bound on the minimum number of (≤ k)-sets in a set of points in general position. We then use this to show that if S is a set of n points in general position, then the number □(S) of convex quadrilaterals determined by the points in S is at least \(0.37553\binom{n}{4} + O(n^3)\). This in turn implies that the rectilinear crossing number \(\overline{\hbox{\rm cr}}(K_n)\) of the complete graph Kn is at least \(0.37553\binom{n}{4} + O(n^3)\). These improved bounds refine results recently obtained by Ábrego and Fernández-Merchant, and by Lovász, Vesztergombi, Wagner and Welzl.

References

  1. 1.
    Ábrego, B.M., Fernández-Merchant, S.: A lower bound for the rectilinear crossing number, Manuscript (2003)Google Scholar
  2. 2.
    Aichholzer, O., Aurenhammer, F., Krasser, H.: On the crossing number of complete graphs. In: Proc. 18th Ann. ACM Symp. Comp. Geom., Barcelona, Spain, pp. 19–24 (2002)Google Scholar
  3. 3.
    Alon, N., Győri, E.: The number of small semispaces of a finite set of points in the plane. J. Combin. Theory Ser. A 41, 154–157 (1986)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Andrzejak, A., Aronov, B., Har-Peled, S., Seidel, R., Welzl, E.: Results on k-sets and j-facets via continuous motion. In: Proc. 14th Ann. ACM Sympos. Comput. Geom., pp. 192–198 (1998)Google Scholar
  5. 5.
    Balogh, J., Salazar, G.: On k-sets, convex quadrilaterals, and the rectilinear crossing number of K n. Manuscript (2004) (submitted)Google Scholar
  6. 6.
    Brodsky, A., Durocher, S., Gethner, E.: Toward the Rectilinear Crossing Number of Kn: New Drawings, Upper Bounds, and Asymptotics. Discrete Math. 262, 59–77 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brodsky, A., Durocher, S., Gethner, E.: The rectilinear crossing number of K 10 is 62. Electron. J. Combin. 8 (2001); Research Paper 23, 30 pp.Google Scholar
  8. 8.
    Dey, T.: Improved bounds on planar k-sets and related problems. Discr. Comput. Geom. 19, 373–382 (1998)MATHCrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H., Hasan, N., Seidel, R., Shen, X.J.: Circles through two points that always enclose many points. Geometriae Dedicata 32, 1–12 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Erdős, P., Guy, R.K.: Crossing number problems. Amer. Math. Monthly 80, 52–58 (1973)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Erdős, P., Lovász, L., Simmons, A., Strauss, E.G.: Dissection graphs of planar point sets. A Survey of Combinatorial Theory, pp. 139–149. North Holland, Amsterdam (1973) Google Scholar
  12. 12.
    Goodman, J.E., Pollack, R.: On the combinatorial classification of nondegenerate configurations in the plane. J. Combin. Theory Ser. A 29, 220–235 (1980)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex Quadrilaterals and k-Sets. Microsoft Research Technical Report MSR-TR-2003-06 (2003) Google Scholar
  14. 14.
    Pfiefer, R.E.: The historical development of J. J. Sylvester’s problem. Math. Mag. 62, 309–317 (1989)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Spencer, J., Tóth, G.: Crossing numbers of random graphs. Random Structures and Algorithms 21, 347–358 (2003)CrossRefGoogle Scholar
  16. 16.
    Scheinerman, E.R., Wilf, H.S.: The rectilinear crossing number of a complete graph and Sylvester’s “four point problem” of geometric probability. Amer. Math. Monthly 101, 939–943 (1994)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sylvester, J.J.: On a special class of questions on the theory of probabilities, Birmingham British Assoc., Report 35, pp. 8–9 (1865)Google Scholar
  18. 18.
    Tóth, G.: Point sets with many k-sets. Discr. Comput. Geom. 26, 187–194 (2001)MATHGoogle Scholar
  19. 19.
    Wagner, U.: On the rectilinear crossing number of complete graphs. In: Proc. 14th ACM-SIAM Sympos. Discr. Alg., pp. 583–588 (2003)Google Scholar
  20. 20.
    Welzl, E.: More on k-sets of finite sets in the plane. Discr. Comput. Geom. 1, 95–100 (1986)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Welzl, E.: Entering and leaving j-facets. Discr. Comput. Geom. 25, 351–364 (2001)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    White, A., Beineke, L.W.: Topological graph theory. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, pp. 15–49. Academic Press, London (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • József Balogh
    • 1
  • Gelasio Salazar
    • 2
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.IICO-UASLPSan Luis PotosiMexico

Personalised recommendations