A Note on the Self-similarity of Some Orthogonal Drawings

  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

Large graphs are difficult to browse and to visually explore. This note adds up evidence that some graph drawing techniques, which produce readable layouts when applied to medium-size graphs, yield self-similar patterns when launched on huge graphs. To prove this, we consider the problem of assessing the self-similarity of graph drawings, and measure the box-counting dimension of the output of three algorithms, each using a different approach for producing orthogonal grid drawings with a reduced number of bends.

References

  1. 1.
    Boyer, J., Myrvold, W.: Stop minding your P’s and Q’s: A simplified O(n) planar embedding algorithm. In: 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 140–146 (1999)Google Scholar
  2. 2.
    de Fraysseix, H., Ossona de Mendez, P.: Public Implementation of a Graph Algorithm Library and Editor. SourceForge project page, http://sourceforge.net/projects/pigale
  3. 3.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)MATHGoogle Scholar
  4. 4.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. John Wiley & Sons Ltd., Chichester (2003)MATHCrossRefGoogle Scholar
  5. 5.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Company, New York (1977)Google Scholar
  7. 7.
    Papakostas, A., Tollis, I.: Efficient orthogonal drawings of high degree graphs. Algorithmica 26, 100–125 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Schroeder, M.: Fractals, chaos, power laws: minutes from an infinite paradise. W. H. Freeman and Company, New York (1991)MATHGoogle Scholar
  9. 9.
    Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the as-level internet topology. In: IEEE/ACM Transactions on Networking (TON), vol. 11, pp. 514–524. ACM Press, New York (2003)Google Scholar
  10. 10.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wu, L., Faloutsos, C.: FracDim (January 2001), Perl package available at http://www.andrew.cmu.edu/~lw2j/downloads.html
  12. 12.
    Yook, S.-H., Jeong, H., Barabasi, A.-L.: Modeling the Internet’s large scale topology. In: Proc. PNAS 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maurizio Patrignani
    • 1
  1. 1.Università di Roma TreItaly

Personalised recommendations