Drawing Pfaffian Graphs

  • Serguei Norine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

We prove that a graph is Pfaffian if and only if it can be drawn in the plane (possibly with crossings) so that every perfect matching intersects itself an even number of times.

References

  1. 1.
    Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect matchings and permanents. Electron. J. combin. 6(1), 18 pp. (1999); Research Paper 6 (electronic)Google Scholar
  2. 2.
    Kasteleyn, P.W.: The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)Google Scholar
  3. 3.
    Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Mathematical Phys. 4, 287–293 (1963)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kasteleyn, P.W.: Graph Theory and Crystal Physics. In: Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)Google Scholar
  5. 5.
    Klee, V., Lardner, R., Manber, R.: Signsolvability revisited. Linear Algebra Appl. 59, 131–157 (1984)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Little, C.H.C.: A characterization of convertible (0,1)-matrices. J. Comb. Theory B 18, 187–208 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    McCuaig, W.: Polya’s permanent problem (preprint)Google Scholar
  8. 8.
    Norine, S.: Pfaffian graphs, T-joins and crossing numbers (submitted)Google Scholar
  9. 9.
    Norine, S.: In PreparationGoogle Scholar
  10. 10.
    Pach, J., Toth, G.: Which crossing number is it anyway? J. Comb. Theory Ser. B 80(2), 225–246 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pólya, G.: Augfabe 424. Arch. Math. Phys. Ser. 20, 271 (1913)Google Scholar
  12. 12.
    Robertson, N., Seymour, P.D., Thomas, R.: Permanents, Pfaffian orientations, and even directed circuits. Ann. of Math. 150(2), 929–975 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Samuelson, P.: Foundations of Economic Analysis. Atheneum, New York (1971)Google Scholar
  14. 14.
    Tesler, G.: Matching in graphs on non-orientable surfaces. J. Comb. Theory B 78, 198–231 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Vazirani, V.V., Yannakakis, M.: Pfaffian orientations, 0 − 1 permanents, and even cycles in directed graphs. Discrete Appl. Math. 25, 179–190 (1989)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Serguei Norine
    • 1
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations