A Linear Time Algorithm for Constructing Maximally Symmetric Straight-Line Drawings of Planar Graphs

  • Seok-Hee Hong
  • Peter Eades
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

This paper presents a linear time algorithm for constructing maximally symmetric straight-line drawings of biconnected and one-connected planar graphs.

References

  1. 1.
    Babai, L.: Automorphism Groups, Isomorphism, and Reconstruction. In: Graham, Groetschel, Lovasz (eds.) Handbook of CombinatoricsCh. 27, vol. 2. Elsevier Science, Amsterdam (1995)Google Scholar
  2. 2.
    Di Battista, G., Tamassia, R.: On-Line Planarity Testing. SIAM Journal on Computing 25(5), 956–997 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eades, P., Lin, X.: Spring Algorithms and Symmetries. Theoretical Computer Science 240, 379–405 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hong, S., Eades, P., Lee, S.: An Algorithm for Finding Geometric Automorphisms in Planar Graphs, Algorithms and Computation. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 277–286. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Hong, S., Eades, P., Lee, S.: Drawing Series Parallel Digraphs Symmetrically. Computational Geometry: Theory and Applicatons 17(3-4), 165–188 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hong, S., McKay, B., Eades, P.: Symmetric Drawings of Triconnected Planar Graphs. In: Proc. of SODA 2002, pp. 356–365 (2002)Google Scholar
  7. 7.
    Hong, S., Eades, P.: Drawing Planar Graphs Symmetrically II: Biconnected Graphs, Technical Report CS-IVG-2001-01, Basser Department of Computer Science, The University of Sydney (2001) (Submitted)Google Scholar
  8. 8.
    Hong, S., Eades, P.: Drawing Planar Graphs Symmetrically III: One-connected Graphs, Technical Report CS-IVG-2001-02, Basser Department of Computer Science, The University of Sydney (2001) (Submitted)Google Scholar
  9. 9.
    Hong, S., Eades, P.: Symmetric Layout of Disconnected Graphs, Algorithms and Computation. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 405–414. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Hopcroft, J.E., Wong, J.K.: Linear Time Algorithm for Isomorphism of Planar Graphs. In: Proc. of the Sixth Annual ACM Symposium on Theory of Computing, pp. 172–184 (1974)Google Scholar
  11. 11.
    Manning, J.: Geometric Symmetry in Graphs, Ph.D. Thesis, Purdue Univ. (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Seok-Hee Hong
    • 1
  • Peter Eades
    • 1
  1. 1.National ICT Australia; School of Information TechnologiesUniversity of SydneyAustralia

Personalised recommendations