Hexagonal Grid Drawings: Algorithms and Lower Bounds

  • Shabnam Aziza
  • Therese Biedl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

We study drawings of graphs of maximum degree six on the hexagonal (triangular) grid, with the main focus of keeping the number of bends small. We give algorithms that achieve 3.5n+3.5 bends for all simple graphs. We also prove optimal lower bounds on the number of bends for K7, and give asymptotic lower bounds for graph classes of varying connectivity.

References

  1. 1.
    Biedl, T.: New lower bounds for orthogonal drawings. J. Graph Algorithms Appl. 2(7), 1–31 (1998)MathSciNetGoogle Scholar
  2. 2.
    Biedl, T.: Relating bends and size in orthogonal graph drawings. Inform. Process. Lett. 65(2), 111–115 (1998)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eades, P., Symvonis, A., Whitesides, S.: Three-dimensional orthogonal graph drawing algorithms. Discrete Appl. Math. 103(1-3), 55–87 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Even, S., Tarjan, R.E.: Computing an st-numbering. Th. Comput. Sci. 2, 339–344 (1976)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 263–276. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Theory of Graphs (Internat. Sympos., Rome, 1966), New York, pp. 215–232 (1967)Google Scholar
  8. 8.
    Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Comput. Geom. 9(1-2), 83–110 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Storer, J.: On minimal-node-cost planar embeddings. Networks 14(2), 181–212 (1984)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Transactions on Circuits and Systems 36(9), 1230–1234 (1989)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Tollis, I.: Wiring layouts in the tri-hexagonal grid. Constraints 3(1), 87–120 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Wood, D.R.: An algorithm for three-dimensional orthogonal graph drawing. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 332–346. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Wood, D.R.: Lower bounds for the number of bends in three-dimensional orthogonal graph drawings. J. Graph Algorithms Appl. 7(1), 33–77 (2003)MATHMathSciNetGoogle Scholar
  15. 15.
    Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general position model. Th. Comput. Sci. 299(1-3), 151–178 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shabnam Aziza
    • 1
  • Therese Biedl
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations