Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm

  • Stefan Hachul
  • Michael Jünger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


Force-directed graph drawing algorithms are widely used for drawing general graphs. However, these methods do not guarantee a sub-quadratic running time in general. We present a new force-directed method that is based on a combination of an efficient multilevel scheme and a strategy for approximating the repulsive forces in the system by rapidly evaluating potential fields. Given a graph G=(V,E), the asymptotic worst case running time of this method is O(|V|log|V| + |E|) with linear memory requirements. In practice, the algorithm generates nice drawings of graphs containing 100000 nodes in less than 5 minutes. Furthermore, it clearly visualizes even the structures of those graphs that turned out to be challenging for some other methods.


Solar System Repulsive Force Large Graph Multipole Expansion Graph Draw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aluru, S., et al.: Distribution-Independent Hierarchical Algorithms for the N-body Problem. Journal of Supercomputing 12, 303–323 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    The AT&T graph collection,
  3. 3.
    Barnes, J., Hut, P.: A hierarchical \(\mathcal{O}\)(N logN) force-calculation algorithm. Nature 324(4), 446–449 (1986)CrossRefGoogle Scholar
  4. 4.
    Davidson, R., Harel, D.: Drawing Graphs Nicely Using Simulated Annealing. ACM Transaction on Graphics 15(4), 301–331 (1996)CrossRefGoogle Scholar
  5. 5.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  6. 6.
    Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-directed Placement. Software–Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  7. 7.
    Gajer, P., et al.: A Multi-dimensional Approach to Force-Directed Layouts of Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Greengard, L.F.: The Rapid Evaluation of Potential Fields in Particle Systems. In: ACM distinguished dissertations. The MIT Press, Cambridge (1988)Google Scholar
  9. 9.
    Harel, D., Koren, Y.: A Fast Multi-scale Method for Drawing Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Jünger, M., et al.: AGD - A Library of Algorithms for Graph Drawing. In: Graph Drawing Software. Mathematics and Visualization, vol. XII, pp. 149–169. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information Processing Letters 31, 7–15 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Koren, Y., et al.: Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling and Simulation 1(4), 645–673 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Quigley, A., Eades, P.: FADE: Graph Drawing, Clustering, and Visual Abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Tunkelang, D.: JIGGLE: Java Interactive Graph Layout Environment. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    C. Walshaw’s graph collection,
  17. 17.
    Walshaw, C.: A Multilevel Algorithm for Force-Directed Graph Drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Hachul
    • 1
  • Michael Jünger
    • 1
  1. 1.Institut für InformatikUniversität zu KölnKölnGermany

Personalised recommendations