Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm

  • Stefan Hachul
  • Michael Jünger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

Force-directed graph drawing algorithms are widely used for drawing general graphs. However, these methods do not guarantee a sub-quadratic running time in general. We present a new force-directed method that is based on a combination of an efficient multilevel scheme and a strategy for approximating the repulsive forces in the system by rapidly evaluating potential fields. Given a graph G=(V,E), the asymptotic worst case running time of this method is O(|V|log|V| + |E|) with linear memory requirements. In practice, the algorithm generates nice drawings of graphs containing 100000 nodes in less than 5 minutes. Furthermore, it clearly visualizes even the structures of those graphs that turned out to be challenging for some other methods.

References

  1. 1.
    Aluru, S., et al.: Distribution-Independent Hierarchical Algorithms for the N-body Problem. Journal of Supercomputing 12, 303–323 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    The AT&T graph collection, www.graphdrawing.org
  3. 3.
    Barnes, J., Hut, P.: A hierarchical \(\mathcal{O}\)(N logN) force-calculation algorithm. Nature 324(4), 446–449 (1986)CrossRefGoogle Scholar
  4. 4.
    Davidson, R., Harel, D.: Drawing Graphs Nicely Using Simulated Annealing. ACM Transaction on Graphics 15(4), 301–331 (1996)CrossRefGoogle Scholar
  5. 5.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  6. 6.
    Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-directed Placement. Software–Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  7. 7.
    Gajer, P., et al.: A Multi-dimensional Approach to Force-Directed Layouts of Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Greengard, L.F.: The Rapid Evaluation of Potential Fields in Particle Systems. In: ACM distinguished dissertations. The MIT Press, Cambridge (1988)Google Scholar
  9. 9.
    Harel, D., Koren, Y.: A Fast Multi-scale Method for Drawing Large Graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Jünger, M., et al.: AGD - A Library of Algorithms for Graph Drawing. In: Graph Drawing Software. Mathematics and Visualization, vol. XII, pp. 149–169. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Kamada, T., Kawai, S.: An Algorithm for Drawing General Undirected Graphs. Information Processing Letters 31, 7–15 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Koren, Y., et al.: Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling and Simulation 1(4), 645–673 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Quigley, A., Eades, P.: FADE: Graph Drawing, Clustering, and Visual Abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Tunkelang, D.: JIGGLE: Java Interactive Graph Layout Environment. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    C. Walshaw’s graph collection, http://www.gre.ac.uk/~c.walshaw/partition
  17. 17.
    Walshaw, C.: A Multilevel Algorithm for Force-Directed Graph Drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Hachul
    • 1
  • Michael Jünger
    • 1
  1. 1.Institut für InformatikUniversität zu KölnKölnGermany

Personalised recommendations