Hamiltonian-with-Handles Graphs and the k-Spine Drawability Problem

  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
  • Matthew Suderman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

A planar graph G is k-spine drawable, k≥ 0, if there exists a planar drawing of G in which each vertex of G lies on one of k horizontal lines, and each edge of G is drawn as a polyline consisting of at most two line segments. In this paper we: (i) Introduce the notion of hamiltonian-with-handles graphs and show that a planar graph is 2-spine drawable if and only if it is hamiltonian-with-handles. (ii) Give examples of planar graphs that are/are not 2-spine drawable and present linear-time drawing techniques for those that are 2-spine drawable. (iii) Prove that deciding whether or not a planar graph is 2-spine drawable is \(\mathcal{NP}\)-Complete. (iv) Extend the study to k-spine drawings for k >2, provide examples of non-drawable planar graphs, and show that the k-drawability problem remains \(\mathcal{NP}\)-Complete for each fixed k > 2.

References

  1. 1.
    Bernhart, F., Kainen, P.: The book thickness of a graph. Journal Combinatorial Theory, Series B 27(3), 320–331 (1979)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cahit, I., Ozel, M.: The characterization of all maximal planar graphs. Manuscript (2003), http://www.emu.edu.tr/~cahit/prprnt.html
  3. 3.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM Journal on Algebraic and Discrete Methods 8, 33–58 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cornelsen, S., Schank, T., Wagner, D.: Drawing graphs on two and three lines. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 31–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Proc. of the 9th Australian Computer Science Conference, ACSC9, pp. 327–334 (1986)Google Scholar
  6. 6.
    Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. Journal of Graph Algorithms and Appl. 7(4), 363–398 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Fößmeier, U., Kaufmann, M.: Nice drawings for planar bipartite graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 122–134. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATHGoogle Scholar
  9. 9.
    Suderman, M.: Pathwidth and layered drawings of trees. Int. Journal of Comp. Geometry 14(3), 203–225 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bulletin of Mathematical Biology 48(2), 189–195 (1986)MATHMathSciNetGoogle Scholar
  11. 11.
    Wigderson, A.: The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical Report 298, Princeton University, EECS Department (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Matthew Suderman
    • 2
  1. 1.Università degli Studi di PerugiaPerugiaItaly
  2. 2.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations