Contact and Intersection Representations

  • Hubert de Fraysseix
  • Patrice Ossona de Mendez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


A necessary and sufficient condition is given for a connected bipartite graph to be the incidence graph of a family of segments and points. We deduce that any 4-connected 3-colorable plane graph is the contact graph of a family of segments and that any 4-colored planar graph without an induced C4 using 4 colors is the intersection graph of a family of straight line segments.


  1. 1.
    Czyziwicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Information Processing Letters 66, 125–126 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    de Castro, N., Cobos, F.J., Dana, J.C., M´arquez, A.: Triangle-free planar graphs as segment intersection graphs. Journal of Graph Algorithms and Applications 6(1), 7–26 (2002)MATHMathSciNetGoogle Scholar
  3. 3.
    de Fraysseix, H.: Local complementation and interlacement graphs. Discrete Mathematics 33, 29–35 (1981)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    de Fraysseix, H.: A Characterization of Circle Graphs. European Journal of Combinatorics 5, 223–238 (1984)MATHMathSciNetGoogle Scholar
  5. 5.
    de Fraysseix, H., Ossona de Mendez, P.: Intersection Graphs of Jordan Arcs. In: Contemporary Trends in Discrete Mathematics, DIMATIA-DIMACS,Štiřin 1997. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 49, pp. 11–28 (1999)Google Scholar
  6. 6.
    de Fraysseix, H., Ossona de Mendez, P.: On a Characterization of Gauss Codes. Discrete and Computational Geometry 2(2) (1999)Google Scholar
  7. 7.
    de Fraysseix, H., Ossona de Mendez, P.: Barycentric systems and stretchability. Discrete Applied Mathematics (2004) (submited)Google Scholar
  8. 8.
    de Fraysseix, H., Ossona de Mendez, P.: Stretching of Jordan arc contact systems. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 71–85. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representation of planar graphs by segments. Intuitive Geometry 63, 109–117 (1991)Google Scholar
  10. 10.
    de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability and Computing 3, 233–246 (1994)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. Journal of Combinatorial Theory 21(B), 8–20 (1986)MathSciNetGoogle Scholar
  12. 12.
    Gauss, C.F.: Werke, pp. 272, pp. 282–285. Teubner Leipzig (1900)Google Scholar
  13. 13.
    Hartman, I.B.-A., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math. 87, 41–52 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hliněny, P.: Contact graphs of line segments are NP-complete. Discrete Mathematics 235(1-3), 95–106 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kratochvíl, J.: String graphs I: the number of critical nonstring graphs is infinite. J. Combin. Theory Ser. B 52, 53–66 (1991)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kratochvíl, J.: String graphs II: Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52 (1991b)Google Scholar
  17. 17.
    Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Combin. Theory Ser. B 52, 1–4 (1991)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. Journal of Combinatorial Theory 62(B,2), 289–315 (1994)MATHCrossRefGoogle Scholar
  19. 19.
    Mnëv, N.E.: On manifolds of combinatorial types of projective configurations and convex polyhedra. Soviet Math. Deokl. 32, 335–337 (1985)MATHGoogle Scholar
  20. 20.
    Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Y. (ed.) Topology and Geometry – Rohlin Seminar (Berlin). Lecture Notes in Mathematics, vol. 1346, pp. 527–544. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  21. 21.
    Pach, J., T´oth, G.: Which crossing number is it anyway? Journal of Combinatorial Theory, Ser. B 80(2), 225–246 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Richter-Gebert, J.: Realization spaces of polytopes. Lecture Notes in Mathematics, vol. 1643 (1996)Google Scholar
  23. 23.
    Rosenstiehl, P.: A new proof of the Gauss interlace conjecture. Advances in Applied Mathematics 23(1), 3–13 (1999)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Journal of Computer and System Sciences 67(2), 365–380 (2003)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs, Ph.D. thesis, Princeton University (1984)Google Scholar
  26. 26.
    Shor, P.W.: Stretchability of pseudolines is NP-hard. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4, 531–554 (1991)MathSciNetGoogle Scholar
  27. 27.
    Sinden, F.W.: Topology of thin RC-circuits. Bell System Tech. J., 1639–1662 (1966)Google Scholar
  28. 28.
    West, D.: Opem problems. SIAM J. Discrete Math. Newslett. 2(1), 10–12 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hubert de Fraysseix
    • 1
  • Patrice Ossona de Mendez
    • 1
  1. 1.UMR 8557, CNRSParisFrance

Personalised recommendations