A Fast and Simple Heuristic for Constrained Two-Level Crossing Reduction

  • Michael Forster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

The one-sided two-level crossing reduction problem is an important problem in hierarchical graph drawing. Because of its NP-hardness there are many heuristics, such as the well-known barycenter and median heuristics. We consider the constrained one-sided two-level crossing reduction problem, where the relative position of certain vertex pairs on the second level is fixed. Based on the barycenter heuristic, we present a new algorithm that runs in quadratic time and generates fewer crossings than existing simple extensions. It is significantly faster than an advanced algorithm by Schreiber [12] and Finnocchi [1,2,6], while it compares well in terms of crossing number. It is also easy to implement.

References

  1. 1.
    Demetrescu, C., Finocchi, I.: Break the “right” cycles and get the “best” drawing. In: Moret, B., Goldberg, A. (eds.) Proc. ALENEX 2000, pp. 171–182 (2000)Google Scholar
  2. 2.
    Demetrescu, C., Finocchi, I.: Removing cycles for minimizing crossings. ACM Journal on Experimental Algorithmics (JEA) 6(1) (2001)Google Scholar
  3. 3.
    di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  4. 4.
    Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Proc. ACSC 1986, Australian National University, pp. 327–334 (1986)Google Scholar
  5. 5.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Finocchi, I.: Layered drawings of graphs with crossing constraints. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 357–368. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Forster, M.: Applying crossing reduction strategies to layered compound graphs. In: Kobourov, S.G., Goodrich, M.T. (eds.) GD 2002. LNCS, vol. 2528, pp. 276–284. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4(3), 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jünger, M., Mutzel, P.: Exact and heuristic algorithms for 2-layer straightline crossing minimization. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 337–348. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. JGAA 1(1), 1–25 (1997)Google Scholar
  11. 11.
    Sander, G.: Visualisierungstechniken für den Compilerbau. PhD thesis, University of Saarbrücken (1996)Google Scholar
  12. 12.
    Schreiber, F.: Visualisierung biochemischer Reaktionsnetze. PhD thesis, University of Passau (2001)Google Scholar
  13. 13.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. SMC 11(2), 109–125 (1981)MathSciNetGoogle Scholar
  14. 14.
    Waddle, V.: Graph layout for displaying data structures. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 241–252. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Forster
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations