A Fast and Simple Heuristic for Constrained Two-Level Crossing Reduction

  • Michael Forster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


The one-sided two-level crossing reduction problem is an important problem in hierarchical graph drawing. Because of its NP-hardness there are many heuristics, such as the well-known barycenter and median heuristics. We consider the constrained one-sided two-level crossing reduction problem, where the relative position of certain vertex pairs on the second level is fixed. Based on the barycenter heuristic, we present a new algorithm that runs in quadratic time and generates fewer crossings than existing simple extensions. It is significantly faster than an advanced algorithm by Schreiber [12] and Finnocchi [1,2,6], while it compares well in terms of crossing number. It is also easy to implement.


Edge Density Simple Heuristic Constraint Graph Graph Size Vertex Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Demetrescu, C., Finocchi, I.: Break the “right” cycles and get the “best” drawing. In: Moret, B., Goldberg, A. (eds.) Proc. ALENEX 2000, pp. 171–182 (2000)Google Scholar
  2. 2.
    Demetrescu, C., Finocchi, I.: Removing cycles for minimizing crossings. ACM Journal on Experimental Algorithmics (JEA) 6(1) (2001)Google Scholar
  3. 3.
    di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  4. 4.
    Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Proc. ACSC 1986, Australian National University, pp. 327–334 (1986)Google Scholar
  5. 5.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Finocchi, I.: Layered drawings of graphs with crossing constraints. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 357–368. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Forster, M.: Applying crossing reduction strategies to layered compound graphs. In: Kobourov, S.G., Goodrich, M.T. (eds.) GD 2002. LNCS, vol. 2528, pp. 276–284. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4(3), 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jünger, M., Mutzel, P.: Exact and heuristic algorithms for 2-layer straightline crossing minimization. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 337–348. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. JGAA 1(1), 1–25 (1997)Google Scholar
  11. 11.
    Sander, G.: Visualisierungstechniken für den Compilerbau. PhD thesis, University of Saarbrücken (1996)Google Scholar
  12. 12.
    Schreiber, F.: Visualisierung biochemischer Reaktionsnetze. PhD thesis, University of Passau (2001)Google Scholar
  13. 13.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. SMC 11(2), 109–125 (1981)MathSciNetGoogle Scholar
  14. 14.
    Waddle, V.: Graph layout for displaying data structures. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 241–252. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Forster
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations