Confluent Layered Drawings

  • David Eppstein
  • Michael T. Goodrich
  • Jeremy Yu Meng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)


We combine the idea of confluent drawings with Sugiyama style drawings, in order to reduce the edge crossings in the resultant drawings. Furthermore, it is easier to understand the structures of graphs from the mixed style drawings. The basic idea is to cover a layered graph by complete bipartite subgraphs (bicliques), then replace bicliques with tree-like structures. The biclique cover problem is reduced to a special edge coloring problem and solved by heuristic coloring algorithms. Our method can be extended to obtain multi-depth confluent layered drawings.


Bipartite Graph Tree Center Layered Graph Edge Coloring Vertex Coloring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barth, W., Jünger, M., Mutzel, P.: Simple and efficient bilayer crossing counting. In: Goodrich, M., Kobourov, S. (eds.) GD 2002. LNCS, vol. 2528, pp. 130–141. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Brélaz: New methods to color the vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)zbMATHCrossRefGoogle Scholar
  3. 3.
    Campers, G., Henkes, O., Leclerq, J.P.: Graph coloring heuristics: A survey, some new propositions and computational experiences on random and “Leighton’s” graphs. In: Rand, G.K. (ed.) Operational research 1987 (Buenos Aires, 1987), pp. 917–932. North-Holland Publishing Co, Amsterdam (1988)Google Scholar
  4. 4.
    Carpano, M.J.: Automatic display of hierarchized graphs for computer aided decision analysis. IEEE Trans. Syst. Man Cybern., SMC 10(11), 705–715 (1980)CrossRefGoogle Scholar
  5. 5.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawing: Visualizing nonplanar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Eades, P., Sugiyama, K.: How to draw a directed graph. J. Inform. Process. 13, 424–437 (1991)Google Scholar
  7. 7.
    Ellson, J., Gansner, E., Koutsofios, E., North, S.: Graphviz,
  8. 8.
    Eschbach, T., Günther, W., Drechsler, R., Becker, B.: Crossing reduction by windows optimization. In: Goodrich, M., Kobourov, S. (eds.) GD 2002. LNCS, vol. 2528, pp. 285–294. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Fishburn, P.C., Hammer, P.L.: Bipartite dimensions and bipartite degree of graphs. Discrete Math. 160, 127–148 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Forster, M.: Applying crossing reduction strategies to layered compound graphs. In: Goodrich, M., Kobourov, S. (eds.) GD 2002. LNCS, vol. 2528, pp. 276–284. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs. IEEE Trans. Softw. Eng. 19, 214–230 (1993)CrossRefGoogle Scholar
  12. 12.
    Gansner, E.R., North, S.C., Vo, K.P.: DAG – A program that draws directed graphs. Softw. – Pract. Exp. 18(11), 1047–1062 (1988)zbMATHCrossRefGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gschwind, D.J., Murtagh, T.P.: A recursive algorithm for drawing hierarchical directed graphs. Technical Report CS-89-02, Department of Computer Science, Williams College (1989)Google Scholar
  16. 16.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. J. Graph Algorithms Appl. 1(1), 1–25 (1997)MathSciNetGoogle Scholar
  17. 17.
    Koutsofios, E., North, S.: Drawing graphs with dot. Technical report, AT&T Bell Laboratories, Murray Hill, NJ (1995), Available from
  18. 18.
    Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal of Research of National Bureau of Standard 84, 489–506 (1979)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Messinger, E.B.: Automatic layout of large directed graphs. Technical Report 88-07-08, Department of Computer Science, University of Washington (1988)Google Scholar
  20. 20.
    Messinger, E.B., Rowe, L.A., Henry, R.H.: A divide-and-conquer algorithm for the automatic layout of large directed graphs. IEEE Trans. Syst. Man Cybern., SMC 21(1), 1–12 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Newbery, F.J.: Edge concentration: A method for clustering directed graphs. In: Proc. 2nd Internat. Workshop on Software Configuration Management, pp. 76–85 (1989)Google Scholar
  22. 22.
    Newbery Paulisch, F., Tichy, W.F.: EDGE: An extendible graph editor. Softw. – Pract. Exp. 20(S1), 63–88 (1990); also as Technical Report 8/88, Fakultat fur Informatik, Univ. of Karlsruhe (1988)Google Scholar
  23. 23.
    Newton, M., Sýkora, O., Vrt’o, I.: Two new heuristics for two-sided bipartite graph drawing. In: Goodrich, M., Kobourov, S. (eds.) GD 2002. LNCS, vol. 2528, pp. 312–319. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  25. 25.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Waddle, V., Malhotra, A.: An E log E line crossing algorithm for levelled graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 59–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Eppstein
    • 1
  • Michael T. Goodrich
    • 1
  • Jeremy Yu Meng
    • 1
  1. 1.School of Information and Computer ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations