Algorithms for Drawing Media

  • David Eppstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3383)

Abstract

We describe algorithms for drawing media, systems of states, tokens and actions that have state transition graphs in the form of partial cubes. Our algorithms are based on two principles: embedding the state transition graph in a low-dimensional integer lattice and projecting the lattice onto the plane, or drawing the medium as a planar graph with centrally symmetric faces.

References

  1. 1.
    Aurenhammer, F., Hagauer, J.: Recognizing binary Hamming graphs in O(n 2 log n) time. Mathematical Systems Theory 28, 387–395 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bhatt, S., Cosmodakis, S.: The complexity of minimizing wire lengths in VLSI layouts. Inform. Proc. Lett. 25, 263–267 (1987)MATHCrossRefGoogle Scholar
  3. 3.
    Chan, T.M.: On levels in arrangements of curves. Discrete & Comput. Geom. 29(3), 375–393 (2003)MATHMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Tamassia, R.: Incremental planarity testing. In: Proc. 30th IEEE Symp. Foundations of Computer Science (FOCS 1989), pp. 436–441 (1989)Google Scholar
  5. 5.
    Eppstein, D.: Layered graph drawing, http://www.ics.uci.edu/~eppstein/junkyard/thickness/
  6. 6.
    Eppstein, D.: The lattice dimension of a graph. To appear in Eur. J. Combinatorics, arXiv:cs.DS/0402028 (to appear)Google Scholar
  7. 7.
    Eppstein, D., Falmagne, J.-C.: Algorithms for media. ACM Computing Research Repository (June 2002) arXiv:cs.DS/0206033Google Scholar
  8. 8.
    Falmagne, J.-C., Ovchinnikov, S.: Media theory. Discrete Applied Mathematics 121(1–3), 103–118 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Fraysseix, H., Ossona de Mendez, P.: Stretching of Jordan arc contact systems. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 71–85. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Goodman, J.E., Pollack, R.: Allowable sequences and order types in discrete and computational geometry. In: New Trends in Discrete and Computational Geometry. Algorithms and Combinatorics 10,  ch. V, pp. 103–134. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Imrich, W., Klavžar, S.: On the complexity of recognizing Hamming graphs and related classes of graphs. Eur. J. Combinatorics 17, 209–221 (1996)MATHCrossRefGoogle Scholar
  12. 12.
    Imrich, W., Klavžar, S.: Product Graphs. John Wiley & Sons, Chichester (2000)MATHGoogle Scholar
  13. 13.
    Mutzel, P.: The SPQR-tree data structure in graph drawing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 34–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Ovchinnikov, S.: The lattice dimension of a tree. arXiv.org (February 2004) arXiv:math.CO/0402246Google Scholar
  15. 15.
    Winkler, P.: Isometric embeddings in products of complete graphs. Discrete Applied Mathematics 7, 221–225 (1984)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wong, T.-T., Luk, W.-S., Heng, P.-A.: Sampling with Hammersley and Halton points. J. Graphics Tools 2(2), 9–24 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Computer Science Department, School of Information & Computer ScienceUniversity of CaliforniaIrvine

Personalised recommendations