TV Scout: Lowering the Entry Barrier to Personalized TV Program Recommendation

  • Patrick Baudisch
  • Lars Brueckner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3379)

Abstract

In this paper, we present TV Scout, a recommendation system providing users with personalized TV schedules. The TV Scout architecture addresses the “cold-start” problem of information filtering systems, i.e. that filtering systems have to gather information about the user’s interests before they can compute personalized recommendations. Traditionally, gathering this information involves upfront user effort, resulting in a substantial entry barrier. TV Scout is designed to avoid this problem by presenting itself to new users not as a filtering system, but as a retrieval system where all user effort leads to an immediate result. While users are dealing with this retrieval functionality, the system continuously and unobtrusively gathers information about the user’s interests from implicit feedback and gradually evolves into a filtering system. An analysis of log file data gathered with over 10,000 registered online users shows that over 85% of all first-time users logged in again, suggesting that the described architecture is successful in lowering the entry barrier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardissono, L., Portis, F., Torasso, P., Bellifemine, F., Chiarotto, A., Difino, A.: Architecture of a system for the generation of personalized Electronic Program Guides. In: Proceedings of the UM 2001 workshop, Personalization in Future TV, Sonthofen, Germany (July 13-17 2001)Google Scholar
  2. 2.
    Baclace, P.E.: Information intake filtering. In: Proceedings of Bellcore Workshop on High- Performance Information Filtering, Morristown, NJ (November 1991)Google Scholar
  3. 3.
    Baudisch, P.: Dynamic Information Filtering. Ph.D. Thesis. GMD Research Series 2001, No. 16. GMD Forschungszentrum Informationstechnik GmbH, Sankt Augustin (2001), ISSN 1435-2699, ISBN 3-88457-399-3, Also at http://www.patrickbaudisch.com/publications
  4. 4.
    Baudisch, P.: Recommending TV Programs on the Web: how far can we get at zero user effort. In: Recommender Systems, Papers from the 1998 Workshop, Technical Report WS- 98-08, Madison, WI, pp. 16–18. AAAI Press, Park (1998)Google Scholar
  5. 5.
    Baudisch, P.: The Profile Editor: designing a direct manipulative tool for assembling profiles. In: Proceedings of Fifth DELOS Workshop on Filtering and Collaborative Filtering, pp. 11–17. ERCIM Report ERCIM-98-W001, Budapest (November 1997)Google Scholar
  6. 6.
    Baudisch, P.: Using a painting metaphor to rate large numbers of objects. In: Ergonomics and User Interfaces, Proceeding of the HCI 1999 Conference, Munich, Germany, pp. 266–270. Erlbaum, Mahwah (1999)Google Scholar
  7. 7.
    Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides of the same coin? CACM 35(12), 29–37 (1992)Google Scholar
  8. 8.
    Borchers, A., Herlocker, J., Konstan, J., Riedl, J.: Ganging up on information overload. Computer 31(4), 106–108 (1998)CrossRefGoogle Scholar
  9. 9.
    Das, D., ter Horst, H.: Recommender systems for TV. In: Recommender Systems, Papers from the 1998 Workshop, Technical Report WS-98-08, Madison, WI, pp. 35–36. AAAI Press, Menlo Park (1998)Google Scholar
  10. 10.
    Denning, P.: Electronic junk. CACM 23(3), 163–165 (1982)Google Scholar
  11. 11.
    Ehrmantraut, M., Härder, T., Wittig, H., Steinmetz, R.: The Personal Electronic Program Guide–towards the pre-selection of individual TV Programs. In: Proc. of CIKM, Rockville, MD, pp. 243–250 (1996)Google Scholar
  12. 12.
    Gravano, L., García-Molina, H.: Merging ranks from heterogeneous Internet sources. In: Proceedings of the 23rd VLDB Conference, Athens, Greece, pp. 196–205 (1997)Google Scholar
  13. 13.
    Grudin, J.: Social evaluation of the user interface: who does the work and who gets the BENEFIT? In: Proc. of INTERACT 1987, pp. 805–811 (1987)Google Scholar
  14. 14.
    Kuhn, M.: The New European Digital Video Broadcast (DVB) Standard, ftp://ftp.informatik.uni-erlangen.de/local/cip/mskuhn/tv-crypt/dvb.txt
  15. 15.
    Kurapati, K., Gutta, S., Schaffer, D., Martino, J., Zimmerman, J.: A multi-agent TV recommender. In: Proceedings of the UM 2001 workshop, Personalization in Future TV, July 13-17 (2001)Google Scholar
  16. 16.
    Nichols, D.M.: Implicit ratings and filtering. In: Proceedings of Fifth DELOS Workshop on Filtering and Collaborative Filtering, Budapest, November 1997, pp. 31–36, ERCIM Report ERCIM-98-W001. Le Chesnay Cedex, France, European Research Consortium for Informatics and Mathematics (1998)Google Scholar
  17. 17.
    Resnick, P., Varian, H. (eds.): Special issue on Recommender Systems. Communications of the ACM 40(3), 56–89 (1997)Google Scholar
  18. 18.
    Proceedings of the UM 2001 workshop, Personalization in Future TV, Sonthofen, Germany, July 13-17 (2001), Online at http://www.di.unito.it/~liliana/UM01/TV.html
  19. 19.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  20. 20.
    Wittig, H., Griwodz, C.: Intelligent media agents in interactive television systems. In: Proc. of the International Conference on Multimedia Computing and Systems 1995, Boston, pp. 182–189. IEEE Computer Science Press, Los Alamitos (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Patrick Baudisch
    • 1
  • Lars Brueckner
    • 2
  1. 1.Inf. Sciences and Technologies LabXerox Palo Alto Research CenterPalo AltoU.S.A.
  2. 2.IT Transfer Office (ITO)Darmstadt University of TechnologyDarmstadtGermany

Personalised recommendations