On the Efficiency of P Systems with Active Membranes and Two Polarizations

  • Artiom Alhazov
  • Rudolf Freund
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3365)

Abstract

We present an algorithm for deterministically deciding SAT in linear time by P systems with active membranes using only two polarizations and rules of types (a), (c), and (e). Moreover, various restrictions on the general form of the rules are considered: global, non-renaming, independent of the polarization, preserving it, changing it, producing two membranes with different polarizations, having exactly one or two objects in (each membrane of) the right-hand side, thus improving results from [1]. Several problems related to different combinations of these restrictions are formulated, too.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Păun, G.: P systems with active membranes and two polarizations. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing, TR 01/2004, University of Seville, Seville, pp. 20–36 (2004)Google Scholar
  2. 2.
    Alhazov, A., Pan, L.: Polarizationless P systems with active membranes. Grammars 7(1) (2004)Google Scholar
  3. 3.
    Alhazov, A., Pan, L., Păun, G.: Trading polarizations for labels in P systems with active membranes. Acta Informaticae (2003) (accepted)Google Scholar
  4. 4.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving graph problems by P systems with restricted elementary active nembranes. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 1–22. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  6. 6.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  7. 7.
    Freund, R., Martín-Vide, C., Păun, G.: From regulated rewriting to computing with membranes: collapsing hierarchies. Theoretical Computer Science 312, 143–188 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Freund, R., Păun, G.: Deterministic P systems (2004) (Submitted)Google Scholar
  9. 9.
    Gutierrez-Narajano, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving numerical NP-complete problems using P systems with active membranes: the partition problem and beyond. In: EMCC Workshop, Vienna (2003)Google Scholar
  10. 10.
    Krishna, S.N., Rama, R.: A variant of P systems with active membranes: solving NP-complete problems. Romanian J. of Information Science and Technology 2(4), 357–367 (1999)Google Scholar
  11. 11.
    Madhu, M., Krithivasan, K.: Improved results about the universality of P systems. Bulletin of the EATCS 76, 162–168 (2002)MathSciNetGoogle Scholar
  12. 12.
    Obtułowicz, A.: Deterministic P systems for solving SAT problem. Romanian J. of Information Science and Technology 4(1-2), 195–202 (2001)Google Scholar
  13. 13.
    Obtułowicz, A.: On P systems with active membranes solving integer factorizing problem in a polynomial time. In: Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 267–286. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Păun, A.: On P systems with global rules. In: Jonoska, N., Seeman, N.C. (eds.) Proc. 7th Intern. Meeting on DNA Based Computers, Tampa, pp. 43–52 (2001)Google Scholar
  15. 15.
    Păun, G.: Computing with Membranes: An Introduction. Springer, Berlin (2002)Google Scholar
  16. 16.
    Paun, G.: Computing with Membranes - A Variant: P systems with polarized membranes. Intern. J. of Foundations of Computer Science 11(1), 167–182 (2000)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pérez-Jiménez, M., Romero Jiménez, A., Sancho Caparrini, F.: Teoria de la complejidad en modelos de computacion celular con membranas. Kronos Editorial, Seville (2002)Google Scholar
  18. 18.
    Jiménez, M.J.P., Jiménez, A.R., Caparrini, F.S.: Solving VALIDITY problem by active membranes with input. In: Cavaliere, M., Martín-Vide, C., Păun, G. (eds.) Proc. Brainstorming Week on Membrane Computing, Rovira i Virgili Univ. Tech. Rep. 26/03, Tarragona, pp. 279–290 (2003)Google Scholar
  19. 19.
    Salomaa, A., Rozenberg, G. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)MATHGoogle Scholar
  20. 20.
    Sosík, P.: Solving a PSPACE-complete problem by P systems with active membranes. In: Cavaliere, M., Martín-Vide, C., Păun, G. (eds.) Proc. Brainstorming Week on Membrane Computing, Rovira i Virgili Univ. Tech. Rep. 26/03, Tarragona, pp. 305–312 (2003)Google Scholar
  21. 21.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 289–301. Springer, London (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Artiom Alhazov
    • 1
    • 2
  • Rudolf Freund
    • 3
  1. 1.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  3. 3.Faculty of InformaticsVienna University of TechnologyWienAustria

Personalised recommendations