Evolution and Oscillation in P Systems: Applications to Biological Phenomena

  • Vincenzo Manca
  • Luca Bianco
  • Federico Fontana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3365)


Some computational aspects and behavioral patterns of P systems are considered, emphasizing dynamical properties that turn useful in characterizing the behavior of biological and biochemical systems. A framework called state transition dynamics is outlined in which general dynamical concepts are formulated in completely discrete terms. A metabolic algorithm is defined which computes the evolution of P systems modeling important phenomena of biological interest once provided with the information on the initial state and reactivity parameters, or growing factors. Relationships existing between P systems and discrete linear systems are investigated. Finally, exploratory considerations are addressed about the possible use of P systems in characterizing the oscillatory behavior of biological regulatory networks described by metabolic graphs.


Cellular Automaton Bovine Spongiform Encephalopathy Oscillatory Phenomenon Membrane Computing Discrete Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70, 85–93 (2002)CrossRefGoogle Scholar
  2. 2.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. Springer, Berlin (2005)Google Scholar
  3. 3.
    Bonanno, C., Manca, V.: Discrete dynamics in biological models. Romanian J. of Inform. Sc. and Tech. 5(1–2), 45–67 (2002)Google Scholar
  4. 4.
    Devaney, R.L.: Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  5. 5.
    Freund, R.: Energy-controlled P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 247–260. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Jones, D.S., Sleeman, B.D.: Differential Equations and Mathematical Biology. Chapman & Hall/CRC, London (2003)zbMATHGoogle Scholar
  8. 8.
    Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)zbMATHGoogle Scholar
  9. 9.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)Google Scholar
  10. 10.
    Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42, 12 (1990)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Manca, V., Franco, G., Scollo, G.: State transition dynamics: basic concepts and molecular computing perspectives. In: Gheorghe, M. (ed.) Molecular Computational Models: Unconventional Approaches, Idea Group Inc. (2004)Google Scholar
  12. 12.
    Martin-Vide, C., Pǎun, G., Rozenberg, G.: Membrane systems with carriers. Theoretical Computer Science 270, 779–796 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Nicolis, G., Prigogine, I.: Exploring Complexity, An Introduction. Freeman and Company, San Francisco (1989)Google Scholar
  14. 14.
    Păun, G.: Computing with membranes. J. Comput. System Sci. 61(1), 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Păun, G.: Membrane Computing - An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  16. 16.
    Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pǎun, G., Suzuki, Y., Tanaka, H.: P systems with energy accounting. Int. J. Computer Math. 78(3), 343–364 (2001)Google Scholar
  18. 18.
    Suzuki, Y., Tanaka, H.: Chemical oscillation in symbolic chemical systems and its behavioral pattern. In: Bar-Yam, Y. (ed.) Proc. International Conference on Complex Systems. New England Complex Systems Institute, pp. 0–7 (1997)Google Scholar
  19. 19.
    Suzuki, Y., Tanaka, H.: Abstract rewriting systems on multisets and their application for modelling complex behaviours. In: Paun, G., Cavaliere, M., Martín-Vide, C. (eds.) Brainstorming Week on Membrane Computing, Tarragona, February 5-11 (2003)Google Scholar
  20. 20.
    Wuensche, A.: Discrete dynamical networks and their Attractor Basins. online journal Complexity International (1998)Google Scholar
  21. 21.
    Wuensche, A.: Basins of attraction in network dynamics: A conceptual framework for biomolecular networks. In: Schlosser, G., Wagner, G.P. (eds.) Modularity in Development and Evolution. Chicago University Press (2003)Google Scholar
  22. 22.
    Wolfram, S.: Theory and Application of Cellular Automata. Addison-Wesley, Reading (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vincenzo Manca
    • 1
  • Luca Bianco
    • 1
  • Federico Fontana
    • 1
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations