Advertisement

On the Size of P Systems with Minimal Symport/Antiport

  • György Vaszil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3365)

Abstract

We show that P systems with symport/antiport rules sending at most one object per direction generate any recursively enumerable set of natural numbers with three membranes. This improves the previously known best bound of four membranes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardini, F., Gheorghe, M.: On the power of minimal symport/antiport. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Workshop on Membrane Computing, WMC 2003, Tarragona. Technical Report 28/03 of the Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain, July 17-22, pp. 72–83 (2003)Google Scholar
  2. 2.
    Bernardini, F., Păun, A.: Universality of minimal symport/antiport: Five membranes suffice. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 43–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Kari, L., Martín-Vide, C., Păun, A.: On the universality of P systems with minimal symport/antiport rules. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 254–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Frisco, P.: About P systems with symport/antiport. In: Păun, G., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week in Membrane Computing, Sevilla. Technical Report 01/2004 of the Research Group in Natural Computing, University of Sevilla, Spain, February 2-7, 2004, pp. 224–236 (2004)Google Scholar
  5. 5.
    Frisco, P., Hoogeboom, H.J.: P systems with symport/antiport simulating counter automata (Submitted)Google Scholar
  6. 6.
    Martín-Vide, C., Păun, A., Păun, G.: On the power of P systems with symport rules. Journal of Universal Computer Science 8, 317–331 (2002)Google Scholar
  7. 7.
    Martín-Vide, C., Păun, A., Păun, G., Rozenberg, G.: Membrane systems with coupled transport. Fundamenta Informaticae 49, 1–15 (2002)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)zbMATHGoogle Scholar
  11. 11.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • György Vaszil
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations