Inhibiting/De-inhibiting Rules in P Systems

  • Matteo Cavaliere
  • Mihai Ionescu
  • Tseren-Onolt Ishdorj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3365)

Abstract

We introduce in the P systems area a mechanism, inspired from neural-cell behavior, which controls computations by inhibiting and de-inhibiting evolution rules. We investigate the computational power of this mechanism in both generative and accepting P systems. In particular, we prove that universality can be obtained by using one catalyst. If we use only non-cooperative rules and one membrane, then we can obtain at least the family of Parikh images of the languages generated by ET0L systems. Several research proposals are also suggested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Ishdorj, T.O.: Membrane Operations in P Systems with Active Membranes, Second Brainstorming Week on Membrane Computing, Technical Report 01/2004, University of Seville, Seville, 37–44 (2004)Google Scholar
  2. 2.
    Alhazov, A., Cavaliere, M.: Proton Pumping P Systems. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 70–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Ardelean, I.I., Cavaliere, M., Sburlan, D.: Computing Using Signals: From Cells to P Systems, Second Brainstorming Week on Membrane Computing, Technical Report 01/2004, University of Seville, Seville, 60–73, and Soft Computing (in press) (2004)Google Scholar
  4. 4.
    Arroyo, F., Baranda, A.V., Castellanos, J., Păun, G.: Membrane Computing: The Power of (Rule) Creation. Journal of Universal Computer Science 8(3), 369–381 (2002)Google Scholar
  5. 5.
    Bottoni, P., Martín-Vide, C., Păun, G., Rozenberg, G.: Membrane Systems with Promoters/Inhibitors. Acta Informatica 38(10), 695–720 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  7. 7.
    Ionescu, M., Ishdorj, T.-O.: Replicative-Distribution Rules in P Systems with Active Membranes. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 68–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ionescu, M., Sburlan, D.: On P Systems with Promoters/Inhibitors, Second Brainstorming Week on Membrane Computing, Technical Report 01/2004, University of Seville, Seville, 264–280, and Journal of Universal Computer Science 10(5), 581–599 (2004)Google Scholar
  9. 9.
    Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  10. 10.
    Pan, L., Alhazov, A., Ishdorj, T.-O.: Further Remarks on P Systems with Active Membranes, Separation, Merging and Release Rules, Soft Computing (in press)Google Scholar
  11. 11.
    Pan, L., Ishdorj, T.-O.: P Systems with Active Membranes and Separation Rules. Journal of Universal Computer Science 10(5), 630–649 (2004)MathSciNetGoogle Scholar
  12. 12.
    Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  13. 13.
    Păun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer Science 287(1), 73–100 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pazos, J., Rodriguez-Paton, A., Silva, A.: Solving SAT in Linear Time with a Neural-Like Membrane System. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 662–669. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)MATHGoogle Scholar
  16. 16.
    Shepherd, G.M.: Neurobiology. Oxford University Press, NY (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Matteo Cavaliere
    • 1
  • Mihai Ionescu
    • 2
  • Tseren-Onolt Ishdorj
    • 2
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain

Personalised recommendations