λP Systems and Typed λ-Calculus

  • Loïc Colson
  • Nataša Jonoska
  • Maurice Margenstern
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3365)

Abstract

In this extended abstract, we recast first the implementation of tree operations in P systems with λP systems and simulation of pure λ-calculus as proposed in [6]. Further, we indicate a similar way to implement Gödel’s T-systems. This provides a family of P systems with each system implementing a family of total recursive functions. The union of the implemented functions coincides with the set of provably total recursive functions in Peano arithmetic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland, Amsterdam (1984)MATHGoogle Scholar
  2. 2.
    Besozzi, D., Ardelean, I.I., Mauri, G.: The potential of P systems for modeling the activity of mechanosensitive channels in E. Coli. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Preproceedings of the Fourth Workshop on Membrane Computing, Report GRLMC 28/03, Universitat Rovira i Virgili, Tarragona, Spain, pp. 84–102 (2003)Google Scholar
  3. 3.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems for picture generation. Fundamenta Informaticae 56, 311–328 (2003)MATHMathSciNetGoogle Scholar
  4. 4.
    De Brujin, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 34, 381–392 (1972)Google Scholar
  5. 5.
    Gödel, K.: Über Eine Bischer Noch Nicht Benützte Erweiterung des Finiten Standpunktes. Dialectica 12, 280–287 (1958) (On a hitherto unexploited extension of the finitary standpoint. Journal of Philosophical Logic 9 (1980) – English translation)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jonoska, N., Margenstern, M.: Tree operations in P systems and λ-calculus. Fundamenta Informaticae 59(1), 67–90 (2004)MATHMathSciNetGoogle Scholar
  7. 7.
    Kreisel, G.: On the interpretation of nonfinitist proofs, Part I, II. Journal of Symbolic Logic 16,17 (1952, 1953)Google Scholar
  8. 8.
    Krivine, J.L.: Lambda-Calculus, Types and Models. Ellis Horwood (1993)Google Scholar
  9. 9.
    Păun, A.: On P systems with membrane division. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 187–201. Springer, London (2000)Google Scholar
  10. 10.
    Păun, G.: P systems with active membranes: Attacking NP-complete problems. J. Automata, Languages and Combinatorics 6(1), 75–90 (2001)MATHGoogle Scholar
  11. 11.
    Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  12. 12.
    Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Solving VALIDITY problem by active membranes with input, Brainstorming Week on Membrane Computing, Tarragona, February 5-11, in Report GRMLC 26/03, Universitat Rovira i Virgili, Tarragona, Spain, 279–290 (2003)Google Scholar
  14. 14.
    Rogozhin, V., Boian, E.: Simulation of mobile ambients by P systems. In: Alhazov, A., Martín-Vide, C., Păun, G. (eds.) Preproceedings of the Fourth Workshop on Membrane Computing, Report GRMLC 28/03, Universitat Rovira i Virgili, Tarragona, Spain, pp. 404–427 (2003)Google Scholar
  15. 15.
    Sosík, P.: Solving a PSPACE-complete problem by P systems with active membranes, Brainstorming Week on Membrane Computing, Tarragona, February 5-11, in Report GRMLC 26/03, Universitat Rovira i Virgili, Tarragona, Spain, 305–312 (2003)Google Scholar
  16. 16.
    Turing, A.M.: Computability and lambda-definability. Journal of Symbolic Logic 2, 153–163 (1937)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Loïc Colson
    • 1
  • Nataša Jonoska
    • 2
  • Maurice Margenstern
    • 1
  1. 1.LITA, EA 3097Université de Metz, UFR MIMMetz, CédexFrance
  2. 2.Department of MathematicsUniversity of South-FloridaTampaUSA

Personalised recommendations