Computational Universality in Symbolic Dynamical Systems

  • Jean-Charles Delvenne
  • Petr Kůrka
  • Vincent D. Blondel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3354)


Many different definitions of computational universality for various types of systems have flourished since Turing’s work. In this paper, we propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. For Turing machines and tag systems, our definition coincides with the usual notion of universality. It however yields a new definition for cellular automata and subshifts. Our definition is robust with respect to noise on the initial condition, which is a desirable feature for physical realizability.

We derive necessary conditions for universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have an infinite number of subsystems. We also discuss the thesis that computation should occur at the ‘edge of chaos’ and we exhibit a universal chaotic system.


Cellular Automaton Temporal Logic Turing Machine Symbolic System Symbolic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siegelmann, H.: Neural Networks and Analog Computation: Beyond the Turing Limit. Progress in Theoretical Computer Science. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. 2.
    Wolfram, S.: A New Kind of Science. Wolfram Media (2002)Google Scholar
  3. 3.
    Moore, C.: Unpredictability and undecidability in dynamical systems. Physical Review Letters 64, 2354–2357 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Siegelmann, H., Fishman, S.: Analog computation with dynamical systems. Physica D 120, 214–235 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theoretical Computer Science 168, 417–459 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In: Proceedings of the 6th IEEE Symposium on Logic in Computer Science (LICS 2001), Boston, USA. IEEE, Los Alamitos (2001)Google Scholar
  7. 7.
    Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computations. Neural Computation 10, 1071–1095 (1998)CrossRefGoogle Scholar
  8. 8.
    Gacs, P.: Reliable cellular automata with self-organization. In: IEEE Symposium on Foundations of Computer Science, pp. 90–99 (1997)Google Scholar
  9. 9.
    Orponen, P.: A survey of continuous-time computation theory. In: Du, D.Z., Ko, K.I. (eds.) Advances in Algorithms, Languages, and Complexity, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  10. 10.
    Moore, C.: Finite-dimensional analog computers: Flows, maps, and recurrent neural networks. In: Calude, C., Casti, J., Dinneen, M. (eds.) Unconventional Models of Computation. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Moore, C.: Dynamical recognizers: real-time language recognition by analog computers. Theoretical Computer Science 201, 99–136 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mitchell, M., Hraber, P., Crutchfield, J.: Dynamic computation, and the “edge of chaos”: A re-examination. In: Cowan, G., Pines, D., Melzner, D. (eds.) Complexity: Metaphors, Models, and Reality. Santa Fe Institute Proceedings, vol. 19, pp. 497–513. Addison-Wesley, Reading (1994) Santa Fe Institute Working Paper 93-06-040Google Scholar
  13. 13.
    Crutchfield, J., Young, K.: Computation at the onset of chaos. In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information, pp. 223–269. Addison-Wesley, Reading (1989)Google Scholar
  14. 14.
    Langton, C.: Computation at the edge of chaos. Physica D 42, 12–37 (1990)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Moore, C.: Generalized shifts: Unpredictability and undecidability in dynamical systems. Nonlinearity 4, 199–230 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  17. 17.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  18. 18.
    Davis, M.: A note on universal Turing machines. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 167–175. Princeton University Press, Princeton (1956)Google Scholar
  19. 19.
    Conway, J.: Unpredictable iterations. In: Proceedings of the 1972 Number Theory Conference, Boulder, Colorado, pp. 49–52 (1972)Google Scholar
  20. 20.
    Durand, B., Róka, Z.: he game of life: universality revisited. In: Delorme, M., Mazoyer, J. (eds.) Cellular Automata: a Parallel Model. Mathematics and its Applications, vol. 460, pp. 51–74. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  21. 21.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory & Dynamical Systems 17, 417–433 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    Kůrka, P.: On topological dynamics of Turing machines. Theoretical Computer Science 174, 203–216 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Devaney, R.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  24. 24.
    Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. American Mathematics Monthly 99, 332–334 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jean-Charles Delvenne
    • 1
  • Petr Kůrka
    • 2
  • Vincent D. Blondel
    • 1
  1. 1.Department of Mathematical EngineeringCatholic University of LouvainLouvain-la-NeuveBelgium
  2. 2.Faculty of Mathematics and PhysicsCharles University of PraguePraha 1Czech Republic

Personalised recommendations