Solving 3CNF-SAT and HPP in Linear Time Using WWW

  • Florin Manea
  • Carlos Martín-Vide
  • Victor Mitrana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3354)


We propose linear time solutions to two much celebrated NP-complete problems, namely the 3CNF-SAT and the directed Hamiltonian Path Problem (HPP), based on AHNEPs having all resources (size, number of rules and symbols) linearly bounded by the size of the given instance. Surprisingly enough, the time for solving HPP does not depend on the number of edges of the given graph. Finally, we discuss a possible real life implementation, not of biological inspiration as one may expect according to the roots of AHNEPs, but using the facilities of the World Wide Web.


Hamiltonian Path Mathematical Linguistics Hybrid Network Underlying Graph Communication Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Networks of evolutionary processors. Acta Informatica 39, 517–529 (2003)MATHMathSciNetGoogle Scholar
  3. 3.
    Castellanos, J., Leupold, P., Mitrana, V.: Descriptional and computational complexity aspects of hybrid networks of evolutionary processors. Theoretical Computer Science (in press)Google Scholar
  4. 4.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Pǎun, G.: Grammar Systems. Gordon and Breach (1993)Google Scholar
  5. 5.
    Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Csuhaj-Varjú, E., Salomaa, A.: Networks ofWatson-Crick D0L system. In: Ito, M., Imaoka, T. (eds.) Proc. International Conference Words, Languages & Combinatorics III, pp. 134–150. World Scientific, Singapore (2003)CrossRefGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E., Mitrana, V.: Evolutionary systems: a language generating device inspired by evolving communities of cells. Acta Informatica 36, 913–926 (2000)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Plander, I. (ed.) Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40. World Sci. Publ., Singapore (1994)Google Scholar
  9. 9.
    Fahlman, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel architectures for AI: NETL, THISTLE and Boltzmann machines. In: Proc. AAAI National Conf. on AI, pp. 109–113. William Kaufman, Los Altos (1983)Google Scholar
  10. 10.
    Hartmanis, J., Lewis II, P.M., Stearns, R.E.: Hierarchies of memory limited computations. In: Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, pp. 179–190 (1965)Google Scholar
  11. 11.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 533–546 (1965)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  13. 13.
    Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of evolutionary processors. Pre-proccedings of DNA 10, 107–117 (2004)Google Scholar
  14. 14.
    Martin-Vide, C., Mitrana, V., Perez-Jimenez, M., Sancho-Caparrini, F.: Hybrid networks of evolutionary processors. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89, 6575–6579 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Florin Manea
    • 1
  • Carlos Martín-Vide
    • 2
  • Victor Mitrana
    • 1
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Research Group in Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain

Personalised recommendations