The Computational Power of Continuous Dynamic Systems

  • Jerzy Mycka
  • José Félix Costa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3354)


In this paper we show how to explore the classical theory of computability using the tools of Analysis: a differential scheme is substituted for the classical recurrence scheme and a limit operator is substituted for the classical minimalization. We show that most relevant problems of computability over the non negative integers can be dealt with over the reals: elementary functions are computable, Turing machines can be simulated, the hierarchy of non computable functions be represented (being the classical halting problem solvable in some level). The most typical concepts in Analysis become natural in this framework.


Turing Machine Continue Fraction Recursive Function Computable Function Correct Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Hur, A., Siegelmann, H.T., Fishman, S.: A theory of complexity for continuous time systems. Journal of Complexity 18(1), 87–103 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoretical Computer Science 138(1), 67–100 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Campagnolo, M.L.: Computational complexity of real valued recursive functions and analog circuits, PhD dissertation, Universidade Tecnica de Lisboa (2001)Google Scholar
  5. 5.
    Campagnolo, M.L., Moore, C., Costa, J.F.: Iteration, inequalities, and differentiability in analog computers. Journal of Complexity 16(4), 642–660 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Campagnolo, M.L., Moore, C., Costa, J.F.: An analog characterization of the Grzegorczyk hierarchy. Journal of Complexity 18(4), 977–1000 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Graça, D., Costa, J.F.: Analog computers and recursive functions over the reals. Journal of Complexity 19(5), 644–664 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Thomson, W. (Lord Kelvin): On an instrument for calculating the integral of the product of two given functions. Proc. Royal Society of London 24, 266–268 (1876)CrossRefGoogle Scholar
  9. 9.
    Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162, 23–44 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mycka, J.: μ-Recursion and infinite limits. Theoretical Computer Science 302, 123–133 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mycka, J., Costa, J.F.: Real recursive functions and their hierarchy. Journal of Complexity 20(6), 835–857 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1989)zbMATHGoogle Scholar
  13. 13.
    Orponen, P.: A survey of continuous-time computation theory. In: Du, D.-Z., Ko, K.-I. (eds.) Advances in Algorithms, Languages and Complexity, pp. 209–224. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  14. 14.
    Pour-El, M.B.: Abstract computability and its relations to the general purpose analog computer. Transactions Amer. Math. Soc. 199, 1–28 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rubel, L.A.: Some mathematical limitations of the general-purpose analog computer. Advances in Applied Mathematics 9, 22–34 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rubel, L.A.: The extended analog computer. Advances in Applied Mathematics 14, 39–50 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shannon, C.: Mathematical theory of the differential analyzer. J. Math. Phys. MIT 20, 337–354 (1941)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Siegelmann, H.T., Fishman, S.: Analog computation with dynamical systems. Physica D 120, 214–235 (1998)zbMATHCrossRefGoogle Scholar
  19. 19.
    Traub, J., Werschulz, A.G.: Complexity and Information. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  20. 20.
    Vretblad, A.: Fourier Analysis and Its Applications. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jerzy Mycka
    • 1
  • José Félix Costa
    • 2
  1. 1.Institute of MathematicsUniversity of Maria Curie-SklodowskaLublinPoland
  2. 2.Department of Mathematics, I.S.T.Universidade Técnica de LisboaLisboaPortugal

Personalised recommendations