Minimum Sum Multicoloring on the Edges of Planar Graphs and Partial k-Trees

(Extended Abstract)
  • Dániel Marx
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3351)


The edge multicoloring problem is that given a graph G and integer demands x(e) for every edge e, assign a set of x(e) colors to edge e, such that adjacent edges have disjoint sets of colors. In the minimum sum edge multicoloring problem the finish time of an edge is defined to be the highest color assigned to it. The goal is to minimize the sum of the finish times. The main result of the paper is a polynomial time approximation scheme for minimum sum multicoloring the edges of planar graphs and partial k-trees.


Planar Graph Tree Decomposition Main Zone Frequent Edge Chromatic Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41(1), 153–180 (1994)MATHMathSciNetGoogle Scholar
  2. 2.
    Bar-Noy, A., Halldórsson, M.M., Kortsarz, G., Salman, R., Shachnai, H.: Sum multicoloring of graphs. J. Algorithms 37(2), 422–450 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1-2), 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S., LaPaugh, A.S.: Scheduling file transfers. SIAM J. Comput. 14(3), 744–780 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Halldórsson, M.M., Kortsarz, G.: Tools for multicoloring with applications to planar graphs and partial k-trees. J. Algorithms 42(2), 334–366 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Halldórsson, M.M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H., Telle, J.A.: Multicoloring trees. Inform. and Comput. 180(2), 113–129 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hoogeveen, J.A., van de Velde, S.L., Veltman, B.: Complexity of scheduling multiprocessor tasks with prespecified processor allocations. Discrete Appl. Math. 55(3), 259–272 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kahn, J.: Asymptotics of the chromatic index for multigraphs. J. Combin. Theory Ser. B 68(2), 233–254 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Marx, D.: Complexity results for minimum sum edge multicoloring. (Manuscript)Google Scholar
  10. 10.
    Marx, D.: The complexity of tree multicolorings. In: Mathematical Foundations of Computer Science 2002 (Warsaw-Otwock), pp. 532–542. Springer, Berlin (2002)CrossRefGoogle Scholar
  11. 11.
    Marx, D.: Minimum sum multicoloring on the edges of trees. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 214–226. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Physics 28, 148–151 (1949)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dániel Marx
    • 1
  1. 1.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations