Strong Colorings of Hypergraphs

  • Geir Agnarsson
  • Magnús M. Halldórsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3351)


A strong vertex coloring of a hypergraph assigns distinct colors to vertices that are contained in a common hyperedge. This captures many previously studied graph coloring problems. We present nearly tight upper and lower bound on approximating general hypergraphs, both offline and online. We then consider various parameters that make coloring easier, and give a unified treatment. In particular, we give an algebraic scheme using integer programming to color graphs of bounded composition-width.


hypergraph strong coloring approximation composition width 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. American Mathematical Society, Graduate Studies in Mathematics 3 (1994)Google Scholar
  2. 2.
    Agnarsson, G., Egilsson, Á.: On vertex coloring simple genetic digraphs. Congressus Numerantium 161, 117–127 (2004)MathSciNetGoogle Scholar
  3. 3.
    Agnarsson, G., Egilsson, Á.S., Halldórsson, M.M.: Proper down-coloring simple acyclic digraphs. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 299–312. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Agnarsson, G., Greenlaw, R., Halldórsson, M.M.: On Powers of Chordal Graphs and Their Colorings. Congressus Numerantium, 142–147 (2000)Google Scholar
  5. 5.
    Agnarsson, G., Halldórsson, M.M.: Coloring Powers of Planar Graphs. SIAM Journal of Discrete Mathematics 16(4), 651–662 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  7. 7.
    Feige, U., Kilian, J.: Zero Knowledge and the Chromatic number. Journal of Computer and System Sciences 57(2), 187–199 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. North-Holland Math. Stud. 88 (1984)Google Scholar
  9. 9.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied Mathematics 101, 77–114 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. System Sci. 46, 218–270 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Creszenci, P., Kann, V.: A compendium of NP-optimization problemsGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA (1979)Google Scholar
  14. 14.
    Halldórsson, M.M., Lau, H.-C.: Low-degree Graph Partitioning via Local Search with Applications to Constraint Satisfaction, Max Cut, and 3-Coloring. Journal of Graph Algorithms and Applications 1(3), 1–13 (1997)MathSciNetGoogle Scholar
  15. 15.
    Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45, 19–23 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Halldórsson, M.M.: Approximation via Partitioning. JAIST Research Report IS-RR-95-0003F (March 1995), Available at
  17. 17.
    Halldórsson, M.M.: Online coloring known graphs. Electronic Journal of Combinatorics (February 2000),
  18. 18.
    Halldórsson, M.M., Kratochvíl, J., Telle, J.A.: Independent sets with domination constraints. Discrete Applied Mathematics 99(1-3), 39–54 (1999), CrossRefGoogle Scholar
  19. 19.
    Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theoretical Computer Science 130, 163–174 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hazan, E., Safra, S., Schwartz, O.: On the Hardness of Approximating k-Dimensional Matching. Electronic Colloquium on Computational Complexity, TR03-020 (2003)Google Scholar
  21. 21.
    Irani, S.: On-Line Coloring Inductive Graphs. Algorithmica 11, 53–72 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Johansson, Ö.: Graph Decomposition Using Node Labels. Doctoral Dissertation, Royal Institute of Technology, Stockholm (2001)Google Scholar
  23. 23.
    Kahn, J.: Asymptotically good list-colorings. J. Combinatorial Th (A) 73, 1–59 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126, 197–221 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Krivelevich, M., Sudakov, B.: Approximate coloring of uniform hypergraphs (Extended abstract). In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, p. 477. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Krumke, S.O., Marathe, M.V., Ravi, S.S.: Approximation algorithms for channel assignment in radio networks. In: 2nd Dial M for Mobility (1998)Google Scholar
  27. 27.
    Lovász, L.: On Decomposition of Graphs. Stud. Sci. Math. Hung. 1, 237–238 (1966)zbMATHGoogle Scholar
  28. 28.
    Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple Heuristics for Unit Disk Graphs. Networks 25, 59–68 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    McCormick, S.T.: Optimal approximation of sparse Hessians and its equivalence to a graph coloring problem. Math. Programming 26(2), 153–171 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    McMorris, F.R., Zaslavsky, T.: Bound graphs of a partially ordered set. J. Combin. Inform. System Sci. 7, 134–138 (1982)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. North-Holland Math. Stud. 95, 257–355 (1984)CrossRefGoogle Scholar
  32. 32.
    Molloy, M., Reed, B.: Near-optimal list colourings. Random Structures and Algorithms 17, 376–402 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Molloy, M., Salavatipour, M.R.: Frequency channel assignment on planar networks. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 736–747. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math. 54, 81–88 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Nishizeki, T., Kashiwagi, K.: On the 1.1 edge-coloring of multigraphs. SIAM Journal on Discrete Mathematics 3(3), 391–410 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Paschos, V.Th.: Polynomial approximation and graph-coloring. Computing 70(1), 41–86 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multi-hop radio networks. IEEE/ACM Trans. on Networking 1(2), 166–172 (1993)CrossRefGoogle Scholar
  38. 38.
    Robertson, N., Seymour, P.: Graph minors V, Excluding a planar graph. Journal of Combinatorial Theory (B) 41, 92–114 (1986)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Geir Agnarsson
    • 1
  • Magnús M. Halldórsson
    • 2
  1. 1.Department of Mathematical SciencesGeorge Mason UniversityFairfax
  2. 2.Department of Computer ScienceUniversity of IcelandRvkIceland

Personalised recommendations