Priority Algorithms for Graph Optimization Problems

  • Allan Borodin
  • Joan Boyar
  • Kim S. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3351)


We continue the study of priority or “greedy-like” algorithms as initiated in [6] and as extended to graph theoretic problems in [9]. Graph theoretic problems pose some modelling problems that did not exist in the original applications of [6] and [2]. Following [9], we further clarify these concepts. In the graph theoretic setting there are several natural input formulations for a given problem and we show that priority algorithm bounds in general depend on the input formulation. We study a variety of graph problems in the context of arbitrary and restricted priority models corresponding to known “greedy algorithms”.


Greedy Algorithm Approximation Ratio Chromatic Number Vertex Cover Combinatorial Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelopoulos, S.: Order-preserving transformations and greedy-like algorithms. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 197–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Angelopoulos, S., Borodin, A.: On the power of priority algorithms for facility location and set cover. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 26–39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability—towards tight results. SIAM Journal on Computing 27, 804–915 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berman, P., Fujito, T.: On approximation properties of the independent set problem for degree 3 graphs. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets by excluding subgraphs. Bit 32, 180–196 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borodin, A., Nielsen, M., Rackoff, C.: (Incremental) priority algorithms. Algorithmica 37, 295–326 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Borodin, A., Boyar, J., Larsen, K.S.: Priority algorithms for graph optimization problems. Preprint PP-2004-10, Department of Mathematics and Computer Science, University of Southern Denmark (2004)Google Scholar
  8. 8.
    Clarkson, K.L.: A modification of the greedy algorithm for vertex cover. Information Processing Letters 16, 23–25 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Davis, S., Impagliazzo, R.: Models of greedy algorithms for graph problems. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (2004)Google Scholar
  10. 10.
    Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of the 34th Symposium on Theory of Computing, pp. 33–42. ACM Press, New York (2002)Google Scholar
  11. 11.
    Edmonds, J.: Matroids and the greedy algorithm. Mathematical Programming 1, 127–136 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Computer and System Sciences 57, 187–199 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45, 19–23 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hochbaum, D.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9(3), 256–278 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic number. Combinatorica 20(3), 393–415 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM 49(5), 1–26 (2002)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Szekeres, G., Wilf, H.S.: An inequality for the chromatic number of graphs. Journal of Combinatorial Theory 4, 1–3 (1968)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Allan Borodin
    • 1
  • Joan Boyar
    • 2
  • Kim S. Larsen
    • 2
  1. 1.Department of Computer ScienceUniversity of Toronto 
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense

Personalised recommendations