Advertisement

A Ring Signature Scheme Using Bilinear Pairings

  • Jing Xu
  • Zhenfeng Zhang
  • Dengguo Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3325)

Abstract

The bilinear pairings such as Weil pairing or Tate pairing over elliptic curves and hyperelliptic curves have been found various applications in cryptography very recently. Ring signature is a very useful tool to provide the user’s anonymity and the signer’s privacy. In this paper, we propose a ring signature scheme based on the bilinear pairings, which is secure against chosen message attacks without random oracles. Moreover, we use this ring signature scheme to construct a concurrent signature scheme for fair exchange of signatures.

Keywords

Signature Scheme Ring Signature Random Oracle Hyperelliptic Curve Bilinear Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Herranz, J., Saez, G.: Forking Lemmas for Ring Signature Schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Joux, A.: The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 20–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Kim, M.S., Kim, K.: A new identification scheme based on the bilinear Diffie- Hellman problem. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 464–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Chen, L.-Q., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    The pairing-Based Crypto Lounge. Web page maintained by Paulo Barreto, http://planeta.terra.com.br/informatica/paulobarreto/pblounge.html
  13. 13.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptative chosen-message attacks. SIAM Journal of Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Boyen, X.: Multipurpose identity-based signcryption. A Swiss army knife for identity-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairingbased cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jing Xu
    • 1
    • 2
  • Zhenfeng Zhang
    • 1
    • 3
  • Dengguo Feng
    • 1
    • 3
  1. 1.State Key Laboratory of Information SecurityP.R. China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingP.R. China
  3. 3.Institute of SoftwareChinese Academy of SciencesBeijingP.R.China

Personalised recommendations