Advertisement

Better Use of Human Visual Model in Watermarking Based on Linear Prediction Synthesis Filter

  • Xinshan Zhu
  • Yangsheng Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3304)

Abstract

This paper presents a new approach on utilizing human visual model (HVM) for watermarking. The approach introduces the linear prediction synthesis filter, whose parameters are derived from a set of just noticeable differences estimated by HVM. After being filtered by such a filter, the watermark can be adapted to characteristics of human visual system. As a result, the watermark visibility is noticeably decreased, while at the same time enhancing its energy. The theoretic analysis of the detector is done to illustrate the affect of the filter on detection value. And the experimental results prove the effectiveness of the new approach.

Keywords

Discrete Cosine Transform Human Visual System Image Watermark Linear Prediction JPEG Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cox, I., Miller, M.L.: A review of watermarking and the importance of perceptual modeling. In: Proc. Electronic Imaging (February 1997)Google Scholar
  2. 2.
    Tewfik, A.H., Swanson, M.: Data hiding for multimedia personalization, interaction, and protection. IEEE Signal Processing Mag. 14, 41–44 (1997)CrossRefGoogle Scholar
  3. 3.
    Wolfgang, R.B., Podilchuk, C.I., Delp, E.J.: Perceptual watermarks for digital images and video. Proc. IEEE 87, 1108–1126 (1999)CrossRefGoogle Scholar
  4. 4.
    Voloshynovskiy, S., Herrigel, A., Baumgaetner, N., Pun, T.: A stochastic approach to content-adaptive digital image watermarking. In: Third International Workshop on Information Hiding (1999)Google Scholar
  5. 5.
    Jayant, N., Johnston, J., Safranek, R.: Signal compression based on models of human perception. Proc. IEEE 81 (October 1993)Google Scholar
  6. 6.
    Watson, B.: DCT quantization matrices optimized for individual images. In: Human Vision, Visual Processing, and Digital Display IV, SPIE, vol. 1913, pp. 202–216 (1993)Google Scholar
  7. 7.
    Watson, A.B., Yang, G.Y., Solomon, J.A., Villasenor, J.: Visual thresholds for wavelet quantization error. In: Human Vision and Electronic Imaging, SPIE, vol. 2657, pp. 381–392 (1996)Google Scholar
  8. 8.
    Lewis, A.S., Knowles, G.: Image compression using the 2-D wavelet transform. IEEE Trans. Image Processing 1, 244–250 (1992)CrossRefGoogle Scholar
  9. 9.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE J. Selected Areas Comm. 16(4), 525–539 (1998)CrossRefGoogle Scholar
  10. 10.
    Barni, M., Bartolini, F., Cappellini, V., Piva, A.: A DCT-domain System for Robust Image Watermarking. IEEE Transactions on Signal Processing 66(3), 357–372 (1998)zbMATHGoogle Scholar
  11. 11.
    Delaigle, J.F., De Vleeschouwer, C., Macq, B.: Watermarking Algorithm Based on Human Visual Model. IEEE Transactions on Signal Processing 66(3), 319–335 (1998)zbMATHGoogle Scholar
  12. 12.
    Kim, Y.S., Kwon, O.H., Park, R.H.: Wavelet based watermarking method for digital images using the human visual system. In: ISCAS 1999. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems vol. 4(30) (June 1999)Google Scholar
  13. 13.
    Vleeschouwer, C.D., Delaigle, J.F., Macq, B.: Invisibility and application functionalities in perceptual watermarking an overview. Proceedings of the IEEE 90(1), 64–77 (2002)CrossRefGoogle Scholar
  14. 14.
    Cox, I.J., Miller, M.L., Bloom, J.A.: Digital Watermarking. Academic Press, San Francisco (2002)Google Scholar
  15. 15.
    Rangsanseri, Y., Thitimajshima, W.: Copyright protection of images using human visual masking on DCT-based watermarking. In: APCCAS 2002. Asia-Pacific Conference on Circuits and Systems, October 2001, vol. 1, pp. 28–31 (2002)Google Scholar
  16. 16.
    Barni, M., Bartolini, F., Piva, A.: Improved Wavelet-Based Watermarking Through Pixel-Wise Masking. IEEE Transactions on Image Processing 10(5), 783–791 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Saravanan, V., Bora, P.K., Ghosh, D.: Oblivious Image-Adaptive Watermarking Using Quantization Index Modulation. In: The Eighth National Conf. on Communications, India, January 2002, pp. 26–37 (2002)Google Scholar
  18. 18.
    Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice Hall, Englewood Cliffs (1998)zbMATHGoogle Scholar
  19. 19.
    Lawrence Marple Jr., S.: Two-dimensional Lattice Linear Prediction Parameter Estimation Method and Fast Algorithm. IEEE Signal Processing Letters 7, 164–168 (2000)CrossRefGoogle Scholar
  20. 20.
    Kuo, S.-S., Johnston, J.D.: Spatial Noise Shaping Based on Human Visual Sensitivity and Its Application to Image Coding. IEEE Transactions on Image Processing 11(5), 509–517 (2002)CrossRefGoogle Scholar
  21. 21.
    Miller, M.L., Bloom, J.A.: Computing the probability of false watermark detection. In: Proceeding of the Third International Workshop on Information Hiding, pp. 146–158 (1999)Google Scholar
  22. 22.
    Helstrom, C.W.: Statistical Theory of Signal Detection. Pergamon Press, New York (1960)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xinshan Zhu
    • 1
  • Yangsheng Wang
    • 1
  1. 1.Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations