Advertisement

Reversible Data Hiding Using Integer Wavelet Transform and Companding Technique

  • Guorong Xuan
  • Chengyun Yang
  • Yizhan Zhen
  • Yun Q. Shi
  • Zhicheng Ni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3304)

Abstract

This paper presents a novel reversible data-embedding method for digital images using integer wavelet transform and companding technique. This scheme takes advantage of the Laplacian-like distribution of integer wavelet coefficients in high frequency subbands, which facilitates the selection of compression and expansion functions and keeps the distortion small between the marked image and the original one. Experimental results show that this scheme outperforms the state-of-the-art reversible data hiding schemes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fridrich, J., Goljan, M., Du, R.: Invertible Authentication. In: Proc. SPIE Photonics West, Security and Watermarking of Multimedia Contents III, San Jose, California, January 2001, vol. 3971, pp. 197–208 (2001)Google Scholar
  2. 2.
    Celik, M., Sharma, G., Tekalp, A.M., Saber, E.: Reversible Data Hiding. In: Proceedings of the International Conference on Image Processing 2002, Rochester, NY (September 2002)Google Scholar
  3. 3.
    Xuan, G., Zhu, J., Chen, J., Shi, Y.Q., Ni, Z., Su, W.: Distortionless Data Hiding Based on Integer Wavelet Transform. In: IEE Electronics Letters (December 2002), pp. 1646–1648.Google Scholar
  4. 4.
    Tian, J.: Reversible Data Embedding Using a Difference Expansion. IEEE Transactions on Circuits and Systems for Video Technology, 890–896 (August 2003)Google Scholar
  5. 5.
    Yang, B., Schmucker, M., Funk, W., Busch, C., Sun, S.: Integer DCT-based Reversible Watermarking for Images Using Companding Technique. In: Proceedings of SPIE, vol. #5306, pp. 5306–5341Google Scholar
  6. 6.
    Sklar, B.: Digital Communications: Fundamentals and Applications. PTR Prentice Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  7. 7.
    Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Wavelet Transforms that Map Integers to Integers. In: Applied and Computational Harmonic Analysis, July 1998, pp. 332–369 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Guorong Xuan
    • 1
  • Chengyun Yang
    • 1
  • Yizhan Zhen
    • 1
  • Yun Q. Shi
    • 2
  • Zhicheng Ni
    • 2
  1. 1.Tongji UniversityShanghaiP.R. China
  2. 2.New Jersey Institute of TechnologyUSA

Personalised recommendations