Gliomas pp 3-24 | Cite as

Astrocytic Tumors

Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 171)

Astrocytic gliomas are the most common primary brain tumors and account for up to two thirds of all tumors of glial origin. In this review we outline the basic histological and epidemiological aspects of the different astrocytoma subtypes in adults. In addition, we summarize the key genetic alterations that have been attributed to astrocytoma patho-genesis and progression. Recent progress has been made by interpreting genetic alterations in a pathway-related context so that they can be directly targeted by the application of specific inhibitors. Also, the first steps have been taken in refining classical histopathological diagnosis by use of molecular predictive markers, for example, MGMT promoter hypermethylation in glioblastomas. Progress in this direction will be additionally accelerated by the employment of high-throughput profiling techniques, such as array-CGH and gene expression profiling. Finally, the tumor stem cell hypothesis has chal lenged our way of understanding astrocytoma biology by emphasizing intratumoral heteroge neity. Novel animal models will provide us with the opportunity to comprehensively study this multilayered disease and explore novel thera peutic approaches in vivo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Actor B, Cobbers JM, Buschges R et al. (2002) Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosomes Cancer 34:416–427PubMedCrossRefGoogle Scholar
  2. Bailey P, Cushing H (1926) A classification of tumors of the glioma group on a histogenetic basis with a correlated study of prognosis. Lippincott, PhiladelphiaGoogle Scholar
  3. Balss J, Meyer J, Mueller W et al. (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602.PubMedCrossRefGoogle Scholar
  4. Bao S, Wu Q, McLendon RE et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  5. Begemann M, Fuller GN, Holland EC (2002) Genetic modeling of glioma formation in mice. Brain Pathol 12:117–32PubMedGoogle Scholar
  6. Beier D, Hau P, Proescholdt M et al. (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedCrossRefGoogle Scholar
  7. Bell DW, Lynch TJ, Haserlat SM et al. (2005) Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung can cer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 23:8081–8092PubMedCrossRefGoogle Scholar
  8. Bigner SH, Vogelstein B (1990) Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1:12–18PubMedCrossRefGoogle Scholar
  9. Bjornsti MA, Houghton PJ (2004) The TOR path way: a target for cancer therapy. Nat Rev Cancer 4:335–348PubMedCrossRefGoogle Scholar
  10. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068.CrossRefGoogle Scholar
  11. CBTRUS (2005) Statistical Report: Primary Brain Tumors in the United States, 1998–2002. Published by the Central Brain Tumor Registry of the United StatesGoogle Scholar
  12. Chan JA, Zhang H, Roberts PS et al. (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63:1236–1242PubMedGoogle Scholar
  13. Choi HS, Wang Z, Richmond W et al. (2006a) Design and synthesis of 7H-pyrrolo[2,3-d]pyri-midines as focal adhesion kinase inhibitors. Part 2. Bioorg Med Chem Lett 16:2689–2692CrossRefGoogle Scholar
  14. Choi HS, Wang Z, Richmond W et al. (2006b) Design and synthesis of 7H-pyrrolo[2,3-d]pyri-midines as focal adhesion kinase inhibitors. Part 1. Bioorg Med Chem Lett 16:2173–2176CrossRefGoogle Scholar
  15. Ekstrand AJ, James CD, Cavenee WK et al. (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gli-omas in vivo. Cancer Res 51:2164–2172PubMedGoogle Scholar
  16. Eskens FA, Dumez H, Hoekstra R et al. (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39:917–926PubMedCrossRefGoogle Scholar
  17. Esteller M, Garcia-Foncillas J, Andion E et al. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354PubMedCrossRefGoogle Scholar
  18. Faury D, Nantel A, Dunn SE et al. (2007) Molecular profiling identifies prognostic subgroups of pediat-ric glioblastoma and shows increased YB-1 expres sion in tumors. J Clin Oncol 25:1196–1208PubMedCrossRefGoogle Scholar
  19. Fleming T P, Saxena A, Clark WC et al. (1992) Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553PubMedGoogle Scholar
  20. Friedlander DR, Zagzag D, Shiff B et al. (1996) Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res 56:1939–1947PubMedGoogle Scholar
  21. Galanis E, Buckner JC, Maurer MJ et al. (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23:5294–5304PubMedCrossRefGoogle Scholar
  22. Gerson SL (2004) MGMT: its role in cancer aetiol ogy and cancer therapeutics. Nat Rev Cancer 4:296–307PubMedCrossRefGoogle Scholar
  23. Giannini C, Scheithauer B W, Burger PC et al. (1999) Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer 85:2033–2045PubMedGoogle Scholar
  24. Giannini C, Hebrink D, Scheithauer B W, Dei Tos AP and James CD (2001) Analysis of p53 mutation and expression in pleomorphic xanthoastrocy-toma. Neurogenetics 3:159–162PubMedCrossRefGoogle Scholar
  25. Giannini C, Paulus W, Louis DN, Liberski P (2007) Pleomorphic xanthoastrocytoma. p.22ff. In: Louis DN, Ohgaki H, Wiestler OD, and Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System, 3rd edition. IARC Press, Lyon, FranceGoogle Scholar
  26. Goldbrunner RH, Haugland HK, Klein CE et al. (1996) ECM dependent and integrin mediated tumor cell migration of human glioma and melanoma cell lines under serum-free conditions. Anticancer Res 16:3679–3687PubMedGoogle Scholar
  27. Greig NH, Ries LG, Yancik R, Rapoport SI (1990) Increasing annual incidence of primary malignant brain tumors in the elderly. J Natl Cancer Inst 82:1621–1624PubMedCrossRefGoogle Scholar
  28. Guha A, Mukherjee J (2004) Advances in the biology of astrocytomas. Curr Opin Neurol 17:655–662PubMedCrossRefGoogle Scholar
  29. Gutmann DH, Baker SJ, Giovannini M, Garbow J, Weiss W (2003) Mouse models of human cancer consortium symposium on nervous system tumors. Cancer Res 63:3001–3004PubMedGoogle Scholar
  30. He J, Olson JJ, James CD (1995) Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55:4833–4836PubMedGoogle Scholar
  31. Hegi ME, Diserens AC, Gorlia T et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  32. Hermanson M, Funa K, Hartman M et al. (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219PubMedGoogle Scholar
  33. Herrlinger U, Felsberg J, Kuker W et al. (2002) Gliomatosis cerebri: molecular pathology and clinical course. Ann Neurol 52:390–399PubMedCrossRefGoogle Scholar
  34. Herrlinger U, Rieger J, Koch D et al. (2006) Phase II trial of lomustine plus temozolomide chemotherapy in addition to radiotherapy in newly diagnosed gliob-lastoma: UKT-03. J Clin Oncol 24:4412–4417PubMedCrossRefGoogle Scholar
  35. Hesselager G, Holland EC (2003) Using mice to decipher the molecular genetics of brain tumors. Neurosurgery 53:685–694; discussion 695PubMedCrossRefGoogle Scholar
  36. Holland EC, Celestino J, Dai C et al. (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57PubMedCrossRefGoogle Scholar
  37. Holland EC (2001) Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2:120–129PubMedCrossRefGoogle Scholar
  38. Huang YT, Lee LT, Lee P P, Lin YS, Lee MT (2005) Targeting of focal adhesion kinase by flavonoids and small-interfering RNAs reduces tumor cell migration ability. Anticancer Res 25:2017–2025PubMedGoogle Scholar
  39. Ichimura K, Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblas-toma gene. Oncogene 13:1065–1072PubMedGoogle Scholar
  40. Ichimura K, Bolin MB, Goike HM et al. (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic glio-mas with G1-S transition control gene abnormalities. Cancer Res 60:417–424PubMedGoogle Scholar
  41. Jen J, Harper J W, Bigner SH et al. (1994) Deletion of p16 and p15 genes in brain tumors. Cancer Res 54:6353–6358PubMedGoogle Scholar
  42. Kaulich K, Blaschke B, Numann A et al. (2002) Genetic alterations commonly found in diffusely infiltrating cerebral gliomas are rare or absent in pleomorphic xanthoastrocytomas. J Neuropathol Exp Neurol 61:1092–1099PubMedGoogle Scholar
  43. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neurooncol 1:44–51Google Scholar
  44. Knobbe CB, Merlo A, Reifenberger G (2002) Pten signaling in gliomas. Neurooncol 4:196–211Google Scholar
  45. Knobbe CB, Reifenberger J, Blaschke B, Reifenberger G (2004) Hypermethylation and transcriptional downregulation of the carboxyl-terminal modulator protein gene in glioblasto-mas. J Natl Cancer Inst 96:483–486PubMedCrossRefGoogle Scholar
  46. Kordek R, Biernat W, Alwasiak J et al. (1995) p53 protein and epidermal growth factor receptor expression in human astrocytomas. J Neurooncol 26:11–16PubMedCrossRefGoogle Scholar
  47. Korshunov A, Sycheva R, Golanov A (2006) Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol (Berl) 111:465–474CrossRefGoogle Scholar
  48. Kraus JA, Wenghoefer M, Schmidt MC et al. (2000) Long-term survival of glioblastoma multiforme: importance of histopathological reevaluation. J Neurol 247:455–460PubMedCrossRefGoogle Scholar
  49. Krex D, Klink B, Hartmann C et al. (2007) Long-term survival with glioblastoma multiforme. Brain 130:2596–2606PubMedCrossRefGoogle Scholar
  50. Kros JM, Zheng P, Dinjens WN, Alers JC (2002) Genetic aberrations in gliomatosis cerebri support monoclonal tumorigenesis. J Neuropathol Exp Neurol 61:806–814PubMedGoogle Scholar
  51. Kunitz A, Wolter M, van den Boom J et al. (2007) DNA hypermethylation and Aberrant Expression of the EMP3 Gene at 19q13.3 in Human Gliomas. Brain Pathol 17:363–370PubMedCrossRefGoogle Scholar
  52. Kuratsu J, Takeshima H, Ushio Y (2001) Trends in the incidence of primary intracranial tumors in Kumamoto, Japan. Int J Clin Oncol 6:183–191PubMedGoogle Scholar
  53. Lee J, Kotliarova S, Kotliarov Y et al. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the pheno-type and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403PubMedCrossRefGoogle Scholar
  54. Legler JM, Ries LA, Smith MA et al. (1999) Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91:1382–1390PubMedCrossRefGoogle Scholar
  55. Lipinski CA, Tran NL, Bay C et al. (2003) Differential role of proline-rich tyrosine kinase 2 and focal adhesion kinase in determining glioblastoma migration and proliferation. Mol Cancer Res 1:323–332PubMedGoogle Scholar
  56. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System, 3rd edition. IARC Press, Lyon, FranceGoogle Scholar
  57. Lynch TJ, Bell DW, Sordella R et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139PubMedCrossRefGoogle Scholar
  58. Mahesparan R, Tysnes BB, Read TA et al. (1999) Extracellular matrix-induced cell migration from glioblastoma biopsy specimens in vitro. Acta Neuropathol (Berl) 97:231–239CrossRefGoogle Scholar
  59. Mawrin C (2005) Molecular genetic alterations in gliomatosis cerebri: what can we learn about the origin and course of the disease? Acta Neuropathol (Berl) 110:527–536CrossRefGoogle Scholar
  60. Mellinghoff IK, Wang M Y, Vivanco I et al. (2005) Molecular determinants of the response of gliob-lastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024PubMedCrossRefGoogle Scholar
  61. Meyer-Puttlitz B, Hayashi Y, Waha A et al. (1997) Molecular genetic analysis of giant cell glioblas-tomas. Am J Pathol 151:853–857PubMedGoogle Scholar
  62. Miller CR, Dunham C P, Scheithauer B W, Perry A (2006) Significance of necrosis in grading of oli-godendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol 24:5419–5426PubMedCrossRefGoogle Scholar
  63. Miller CR, Perry A (2007) Glioblastoma. Arch Pathol Lab Med 131:397–406PubMedGoogle Scholar
  64. Nakamura M, Watanabe T, Klangby U et al. (2001) p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11:159–168PubMedGoogle Scholar
  65. Nutt CL, Mani DR, Betensky RA et al. (2003) Gene expression-based classification of malignant gli-omas correlates better with survival than histo-logical classification. Cancer Res 63:1602–1607PubMedGoogle Scholar
  66. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 109:93–108CrossRefGoogle Scholar
  67. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453PubMedCrossRefGoogle Scholar
  68. Parsons DW, Jones S, Zhang X et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812.PubMedCrossRefGoogle Scholar
  69. Pelloski CE, Ballman K V, Furth AF et al. (2007) Epidermal growth factor receptor variant III status defines clinically distinct subtypes of gliob-lastoma. J Clin Oncol 25:2288–2294PubMedCrossRefGoogle Scholar
  70. Peraud A, Ansari H, Bise K, Reulen HJ (1998) Clinical outcome of supratentorial astrocytoma WHO grade II. Acta Neurochir (Wien) 140:1213–1222CrossRefGoogle Scholar
  71. Peraud A, Watanabe K, Schwechheimer K et al. (1999) Genetic profile of the giant cell glioblas-toma. Lab Invest 79:123–129PubMedGoogle Scholar
  72. Phillips HS, Kharbanda S, Chen R et al. (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogene-sis. Cancer Cell 9:157–173PubMedCrossRefGoogle Scholar
  73. Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92:713–723PubMedCrossRefGoogle Scholar
  74. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126PubMedCrossRefGoogle Scholar
  75. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000PubMedCrossRefGoogle Scholar
  76. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3:489–501PubMedCrossRefGoogle Scholar
  77. Rao RD, James CD (2004) Altered molecular pathways in gliomas: an overview of clinically relevant issues. Semin Oncol 31:595–604PubMedCrossRefGoogle Scholar
  78. Reifenberger G, Collins VP (2004) Pathology and molecular genetics of astrocytic gliomas. J Mol Med 82:656–670PubMedCrossRefGoogle Scholar
  79. Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP (1994) Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54:4299–4303PubMedGoogle Scholar
  80. Reifenberger G, Ichimura K, Reifenberger J et al. (1996) Refined mapping of 12q13-q15 ampli-cons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56:5141–5145PubMedGoogle Scholar
  81. Reifenberger G, Kaulich K, Wiestler OD, Blumcke I (2003) Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuro-pathol (Berl) 105:358–364Google Scholar
  82. Reilly KM, Jacks T (2001) Genetically engineered mouse models of astrocytoma: GEMs in the rough? Semin Cancer Biol 11:177–191PubMedCrossRefGoogle Scholar
  83. Reis RM, Konu-Lebleblicioglu D, Lopes JM, Kleihues P, Ohgaki H (2000) Genetic profile of gliosarcomas. Am J Pathol 156:425–432PubMedGoogle Scholar
  84. Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3:430–446PubMedCrossRefGoogle Scholar
  85. Rickert CH, Paulus W (2002) No chromosomal imbalances detected by comparative genomic hybridisation in subependymal giant cell astro-cytomas. Acta Neuropathol (Berl) 104:206–208CrossRefGoogle Scholar
  86. Riemenschneider MJ, Buschges R, Wolter M et al. (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096PubMedGoogle Scholar
  87. Riemenschneider MJ, Knobbe CB, Reifenberger G (2003) Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer 104:752–757PubMedCrossRefGoogle Scholar
  88. Riemenschneider MJ, Mueller W, Betensky RA, Mohapatra G, Louis DN (2005) In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol 167:1379–1387PubMedGoogle Scholar
  89. Riemenschneider MJ, Betensky RA, Pasedag SM, Louis DN (2006) AKT activation in human gliob-lastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res 66:5618–5623PubMedCrossRefGoogle Scholar
  90. Roerig P, Nessling M, Radlwimmer B et al. (2005) Molecular classification of human gliomas using matrix-based comparative genomic hybridization. Int J Cancer 117:95–103PubMedCrossRefGoogle Scholar
  91. Salhia B, Tran NL, Symons M et al. (2006) Molecular pathways triggering glioma cell invasion. Expert Rev Mol Diagn 6:613–626PubMedCrossRefGoogle Scholar
  92. Schiffer D, Chio A, Giordana MT, Leone M, Soffietti R (1988) Prognostic value of histologic factors in adult cerebral astrocytoma. Cancer 61:1386–1393PubMedCrossRefGoogle Scholar
  93. Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54:6321–6324PubMedGoogle Scholar
  94. Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP (1997) Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer 75:2–8PubMedGoogle Scholar
  95. Singh K, Sun S, Vezina C (1979) Rapamycin ( AY-22,989), a new antifungal antibiotic. I V. Mechanism of action. J Antibiot (Tokyo) 32:630–645Google Scholar
  96. Singh SK, Hawkins C, Clarke ID et al. (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  97. Smith JS, Tachibana I, Passe SM et al. (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256PubMedCrossRefGoogle Scholar
  98. Tihan T, Fisher PG, Kepner JL et al. (1999) Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 58:1061–1068PubMedCrossRefGoogle Scholar
  99. Uhrbom L, Dai C, Celestino JC et al. (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62:5551–5558PubMedGoogle Scholar
  100. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436PubMedCrossRefGoogle Scholar
  101. Waha A, Guntner S, Huang TH et al. (2005) Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia 7:193–199PubMedCrossRefGoogle Scholar
  102. Watanabe K, Sato K, Biernat W et al. (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3:523–530PubMedGoogle Scholar
  103. Watanabe K, Peraud A, Gratas C et al. (1998) p53 and PTEN gene mutations in gemistocytic astro-cytomas. Acta Neuropathol (Berl) 95:559–564CrossRefGoogle Scholar
  104. Watanabe T, Katayama Y, Yoshino A et al. (2007) Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol 17:5–10PubMedCrossRefGoogle Scholar
  105. Weber RG, Hoischen A, Ehrler M et al. (2006) Frequent loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xan-thoastrocytomas. OncogeneGoogle Scholar
  106. Weiss WA, Israel M, Cobbs C et al. (2002) Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene 21:7453–7463PubMedCrossRefGoogle Scholar
  107. Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD (1998) The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immuno-therapeutic target. J Neurovirol 4:148–158PubMedCrossRefGoogle Scholar
  108. Xiao A, Wu H, Pandolfi P P, Louis DN, Van Dyke T (2002) Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1:157–168PubMedCrossRefGoogle Scholar
  109. Zhu Y, Guignard F, Zhao D et al. (2005) Early inac-tivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus J. Riemenschneider
    • 1
  • Guido Reifenberger
    • 1
  1. 1.Institute of NeuropathologyUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations