Advertisement

A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales

  • Ole E. Barndorff–Nielsen
  • Svend Erik Graversen
  • Jean Jacod
  • Mark Podolskij
  • Neil Shephard

Keywords

Central Limit Theorem Stochastic Volatility Quadratic Variation Polynomial Growth Stochastic Volatility Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 References

  1. 1.
    Andersen T.G., Bollerslev T., Diebold F.X. and Labys P.: Modeling and Fore-casting realized Volatility. Econometrica, 71, 579-625 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andersen T.G., Bollerslev T. and Diebold F.X.: Parametric and nonparametric measurement of volatility, in “Handbook of Financial Econometrics”, edited by Ait-Sahalia Y. and Hansen L.P., North Holland, Amsterdam, Forthcoming (2004)Google Scholar
  3. 3.
    Barndorff-Nielsen O.E. and Shephard N.: Econometric analysis of realised volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B, 64, 253-280 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barndorff-Nielsen O.E. and Shephard N.: Econometrics of testing for jumps in financial economics using bipower variation. Unpublished discussion paper: Nuffield College, Oxford (2003)Google Scholar
  5. 5.
    Barndorff-Nielsen O.E. and Shephard N.: Power and bipower variation with stochastic volatility and jumps (with discussion). Journal of Financial Econo-metrics, 2, 1-48 (2004)Google Scholar
  6. 6.
    Barndorff-Nielsen O.E. and Shephard N.: Econometric analysis of realised co-variation: high frequency covariance, regression and correlation in financial eco-nomics. Econometrica, 72, 885-925 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Becker E.: Thórèmes limites pour des processus discrétisés. PhD Thesis, Univ. P. et M. Curie (1998)Google Scholar
  8. 8.
    Jacod, J.: Limit of random measures associated with the increments of a Brown-ian semimartingale. Unpublished manuscript (1994)Google Scholar
  9. 9.
    Jacod, J. and Shiryaev, A.: Limit Theorems for Stochastic Processes, 2d edition. Springer-Verlag: Berlin (2003)zbMATHGoogle Scholar
  10. 10.
    Jacod, J.: Inference for stochastic processes, in “Handbook of Financial Econo-metrics”, edited by Ait-Sahalia Y. and Hansen L.P., North Holland, Amsterdam, Forthcoming (2004)Google Scholar
  11. 11.
    Rényi A.: On stable sequences of events. Sankhya, Ser. A, 25, 293-302 (1963)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ole E. Barndorff–Nielsen
    • 1
  • Svend Erik Graversen
    • 2
  • Jean Jacod
    • 3
  • Mark Podolskij
    • 4
  • Neil Shephard
    • 5
  1. 1.Dept. of Mathematical SciencesUniversity of AarhusAarhus CDenmark
  2. 2.Dept. of Mathematical SciencesUniversity of AarhusAarhus CDenmark
  3. 3.Laboratoire de Probabilités et Modèles Aléatoires (CNRS UMR 7599)Université P. et M. CurieParis CedexFrance
  4. 4.Dept. of Probability and StatisticsRuhr University of BochumBochumGermany
  5. 5.Nuffield CollegeOxfordUK

Personalised recommendations