Advertisement

Abstract

This paper presents translations forth and back between formulas of the linear time μ-calculus and finite automata with a weak parity acceptance condition. This yields a normal form for these formulas, in fact showing that the linear time alternation hierarchy collapses at level 0 and not just at level 1 as known so far. The translation from formulas to automata can be optimised yielding automata whose size is only exponential in the alternation depth of the formula.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: Proc. 13th Annual ACM Symp. on Principles of Programming Languages, pp. 173–183. ACM, New York (1986)Google Scholar
  2. 2.
    Békić, H.: In: Bekic, H. (ed.) Programming Languages and their Definition. LNCS, vol. 177. Springer, Heidelberg (1984)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Bradfield, J.C.: The modal μ-calculus alternation hierarchy is strict. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 233–246. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford University Press, Stanford (1962)Google Scholar
  6. 6.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: Proc. 12th Symp. on Logic in Computer Science, LICS 1997, Warsaw, Poland, pp. 99–110. IEEE, Los Alamitos (1997)Google Scholar
  8. 8.
    Emerson, E.A.: Model checking and the μ-calculus. In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models, ch. 6. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, AMS (1997)Google Scholar
  9. 9.
    Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Proc. 32nd Symp. on Foundations of Computer Science, San Juan, Puerto Rico, pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  10. 10.
    Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional μ-calculus with respect to monadic second order logic. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Kaivola, R.: Using Automata to Characterise Fixed Point Temporal Logics. PhD thesis, LFCS, Division of Informatics, The University of Edinburgh, Tech. Rep. ECS-LFCS-97-356 (1997)Google Scholar
  12. 12.
    Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transactions on Computational Logic 2(3), 408–429 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Muller, D., Schupp, P.: Alternating automata on infinite objects: determinacy and rabin’s theorem. In: Perrin, D., Nivat, M. (eds.) Automata on Infinite Words. LNCS, vol. 192, pp. 100–107. Springer, Heidelberg (1985)Google Scholar
  17. 17.
    Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In: Proc. 3rd Symp. on Logic in Computer Science, LICS 1988, Edinburgh, Scotland, pp. 422–427. IEEE, Los Alamitos (1988)Google Scholar
  18. 18.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. of Amer. Math. Soc. 141, 1–35 (1969)MATHMathSciNetGoogle Scholar
  19. 19.
    Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. Conf. on Principles of Programming Languages, POPL 1988, pp. 250–259. ACM Press, New York (1988)Google Scholar
  21. 21.
    Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Walukiewicz, I.: Completeness of Kozen’s axiomatization of the propositional μ- calculus. In: Proc. 10th Symp. on Logic in Computer Science, LICS 1995, pp. 14–24. IEEE, Los Alamitos (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Lange
    • 1
  1. 1.Institut für InformatikUniversity of MunichGermany

Personalised recommendations