Which XML Schemas Admit 1-Pass Preorder Typing?

  • Wim Martens
  • Frank Neven
  • Thomas Schwentick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3363)


It is shown that the class of regular tree languages admitting one-pass preorder typing is exactly the class defined by restrained competition tree grammars introduced by Murata et al. [14]. In a streaming context, the former is the largest class of XSDs where every element in a document can be typed when its opening tag is met. The main technical machinery consists of semantical characterizations of restrained competition grammars and their subclasses. In particular, they can be characterized in terms of the context of nodes, closure properties, allowed patterns and guarded DTDs. It is further shown that deciding whether a schema is restrained competition is tractable. Deciding whether a schema is equivalent to a restrained competition tree grammar, or one of its subclasses, is much more difficult: it is complete for EXPTIME. We show that our semantical characterizations allow for easy optimization and minimization algorithms. Finally, we relate the notion of one-pass preorder typing to the existing XML Schema standard.


Regular Expression Regular Language Tree Automaton Tree Language Semantical Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–211 (2004)Google Scholar
  2. 2.
    Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge languages over unranked alphabets: Version 1, April 3, 2001. Technical Report HKUST-TCSC-2001-0, The Hongkong University of Science and Technology (2001)Google Scholar
  3. 3.
    Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Information and Computation 142(2), 182–206 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    World Wide Web Consortium. Extensible Markup Language (XML),
  5. 5.
    World Wide Web Consortium. XML Schema,
  6. 6.
    World Wide Web Consortium. XML Schema Part 0: Primer,
  7. 7.
    World Wide Web Consortium. XML Schema Part 1: Structures,
  8. 8.
    Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language. ACM Transactions on Internet Technology (TOIT) 3(2), 117–148 (2003)CrossRefGoogle Scholar
  9. 9.
    Koch, C., Scherzinger, S.: Attribute grammars for scalable query processing on XML streams. In: DBPL, pp. 233–256 (2003)Google Scholar
  10. 10.
    Mani, M.: Keeping chess alive - Do we need 1-unambiguous content models? In: Extreme Markup Languages, Montreal, Canada (2001)Google Scholar
  11. 11.
    Martens, W., Neven, F.: Typechecking top-down uniform unranked tree transducers. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 64–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML transformations. In: PODS 2004, pp. 23–34 (2004)Google Scholar
  13. 13.
    Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple regular expressions. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 889–900. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Murata, M., Lee, D., Mani, M.: Taxonomy of XML schema languages using formal language theory. In: Extreme Markup Languages, Montreal, Canada (2001)Google Scholar
  15. 15.
    Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: PODS 2000, pp. 35–46. ACM Press, New York (2000)CrossRefGoogle Scholar
  17. 17.
    Papakonstantinou, Y., Vianu, V.: Incremental validation of XML documents. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 47–63. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Segoufin, L., Vianu, V.: Validating streaming XML documents. In: PODS 2002, pp. 53–64. ACM Press, New York (2002)CrossRefGoogle Scholar
  19. 19.
    Seidl, H.: Deciding equivalence of finite tree automata. SIAM Journal on Computing 19(3), 424–437 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sperberg-McQueen, C.M.: XML Schema 1.0: A language for document grammars. In: XML 2003 - Conference Proceedings (2003)Google Scholar
  21. 21.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: STOC 1973, pp. 1–9 (1973)Google Scholar
  22. 22.
    Suciu, D.: Typechecking for semistructured data. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    van der Vlist, E.: XML Schema. O’Reilly, Sebastopol (2002)zbMATHGoogle Scholar
  24. 24.
    van der Vlist, E.: Relax NG. O’Reilly, Sebastopol (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wim Martens
    • 1
  • Frank Neven
    • 1
  • Thomas Schwentick
    • 2
  1. 1.Limburgs Universitair CentrumDiepenbeekBelgium
  2. 2.Fachbereich 12, Mathematik und InformatikPhilipps Universität Marburg 

Personalised recommendations