Towards Predicting Optimal Fusion Candidates: A Case Study on Biometric Authentication Tasks

  • Norman Poh
  • Samy Bengio
Conference paper

DOI: 10.1007/978-3-540-30568-2_14

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3361)
Cite this paper as:
Poh N., Bengio S. (2005) Towards Predicting Optimal Fusion Candidates: A Case Study on Biometric Authentication Tasks. In: Bengio S., Bourlard H. (eds) Machine Learning for Multimodal Interaction. MLMI 2004. Lecture Notes in Computer Science, vol 3361. Springer, Berlin, Heidelberg

Abstract

Combining multiple information sources, typically from several data streams is a very promising approach, both in experiments and to some extend in various real-life applications. However, combining too many systems (base-experts) will also increase both hardware and computation costs. One way to selecting a subset of optimal base-experts out of N is to carry out the experiments explicitly. There are 2N–1 possible combinations. In this paper, we propose an analytical solution to this task when weighted sum fusion mechanism is used. The proposed approach is at least valid in the domain of person authentication. It has a complexity that is additive between the number of examples and the number of possible combinations while the conventional approach, using brute-force experimenting, is multiplicative between these two terms. Hence, our approach will scale better with large fusion problems. Experiments on the BANCA multi-modal database verified our approach. While we will consider here fusion in the context of identity verification via biometrics, or simply biometric authentication, it can also have an important impact in meetings because this a priori information can assist in retrieving highlights in meeting analysis as in “who said what”. Furthermore, automatic meeting analysis also requires many systems working together and involves possibly many audio-visual media streams. Development in fusion of identity verification will provide insights into how fusion in meetings can be done. The ability to predict fusion performance is another important step towards understanding the fusion problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Norman Poh
    • 1
  • Samy Bengio
    • 1
  1. 1.IDIAP Research InstituteMartignySwitzerland

Personalised recommendations