Advertisement

Stream Integration Techniques for Grid Monitoring

  • Andy Cooke
  • Alasdair J. G. Gray
  • Werner Nutt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3360)

Abstract

Grids are distributed systems that provide access to computational resources in a transparent fashion. Providing information about the status of the Grid itself is called Grid monitoring. As an approach to this problem, we present the Relational Grid Monitoring Architecture (R-GMA), which tackles Grid monitoring as an information integration problem.

A novel feature of R-GMA is its support for integrating stream data via a simple “local as view” approach. We describe the infrastructure that R-GMA provides for publishing and querying monitoring data. In this context, we discuss the semantics of continuous queries, provide characterisations of query plans, and present an algorithm for computing such plans.

The concepts and mechanisms offered by R-GMA are general and can be applied in other areas where there is a need for publishing and querying information in a distributed fashion.

Keywords

Global Schema Stream Producer Query Plan Continuous Query Local Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arasu, A., Widom, J., Babu, S.: CQL: A language for continuous queries over streams and relations. In: 10th International Workshop on Database Programming Languages, Potsdam, Germany, pp. 1–19. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proc. 21st Symposium on Principles of Database Systems, Madison, Wisconsin, USA, pp. 1–16. ACM Press, New York (2002)Google Scholar
  3. 3.
    Berman, F.: From TeraGrid to Knowledge Grid. Communications of the ACM 44(11), 27–28 (2001)CrossRefGoogle Scholar
  4. 4.
    Calí, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data integration systems. In: Gottlob, G., Walsh, T. (eds.) Proc. 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, pp. 16–21. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  5. 5.
    Calí, A., De Nigris, S., Lembo, D., Messineo, G., Rosati, R., Ruzzi, M.: DIS@DIS: A system for semantic data integration under integrity constraints. In: Proc. 4th International Conference on Web Information Systems Engineering, Rome, Italy, pp. 335–339. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  6. 6.
    Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams—a new class of data management applications. In: Proc. 28th International Conference on Very Large Data Bases, pp. 215–226. Morgan Kaufmann Publishers, San Francisco (2002)CrossRefGoogle Scholar
  7. 7.
    The CrossGrid Project (July 2004), http://www.crossgrid.org
  8. 8.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th International Symposium on High Performance Distributed Computing, San Francisco, California, USA, pp. 181–194. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  9. 9.
    The DataGrid Project (July 2004), http://www.eu-datagrid.org
  10. 10.
    DataGrid WP3 Information and Monitoring Services (July 2004), http://hepunx.rl.ac.uk/edg/wp3/
  11. 11.
    Enabling Grids for E-science in Europe (July 2004), http://public.eu-egee.org/
  12. 12.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. In: Computational Grids, vol. 2, pp. 15–51. Morgan Kaufmann, San Francisco (1999)Google Scholar
  13. 13.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual organization. The International Journal of High Performance Computing Applications 15(3), 200–222 (2001)CrossRefGoogle Scholar
  14. 14.
    Global Grid Forum (July 2004), http://www.ggf.org
  15. 15.
    Globus Toolkit (July 2004), http://www.globus.org
  16. 16.
    High Energy Nuclear Physics InterGrid Collaboration Board (July 2004), http://www.hicb.org/glue/glue.htm
  17. 17.
    Halevy, A.: Answering queries using views: A survey. The VLDB Journal 10(4), 270–294 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Johnston, W.E., Gannon, D., Nitzberg, B.: Grids as production computing environments: The engineering aspects of NASA’s Information Power Grid. In: 8th International Symposium on High Performance Distributed Computing, Redondo Beach, California, USA, pp. 197–204. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  19. 19.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. 21st Symposium on Principles of Database Systems, Madison, Wisconsin, USA, pp. 233–246. ACM Press, New York (2002)Google Scholar
  20. 20.
    Levy, A.Y., Rajaraman, A., Ordille, J.J.: The world wide web as a collection of views: Query processing in the Information Manifold. In: Proc. Workshop on Materialized Views: Techniques and Applications, Montreal, Canada, June 1996, pp. 43–55 (1996)Google Scholar
  21. 21.
    Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web technology. In: Proc. 12th International World Wide Web Conference, Budapest, Hungary, pp. 331–339. ACM Press, New York (2003)Google Scholar
  22. 22.
    Liberatore, P.: The complexity of checking redundancy of CNF propositional formulae. In: Proc. 15th European Conference on Artificial Intelligence, July 2002, pp. 262–266. IEEE, IOS Press (2002)Google Scholar
  23. 23.
    Matthews, W., Cottrel, L.: The pinger project (July 2004), http://wwwiepm.slac.stanford.edu/pinger/
  24. 24.
    Open Grid Services Architecture–Data Access and Integration (OGSA-DAI) (July 2004), http://www.ogsadai.org.uk
  25. 25.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 335–339. Springer, Heidelberg (2002)Google Scholar
  26. 26.
    Plale, B., Schwan, K.: Dynamic querying of streaming data with the dQUOB system. IEEE Transactions on Parallel and Distributed Systems 14(3), 422–432 (2003)CrossRefGoogle Scholar
  27. 27.
    Ribler, R.L., Vetter, J.S., Simitci, H., Reed, D.A.: Autopilot: Adaptive control of distributed applications. In: 7th International Symposium on High Performance Distributed Computing, Chicago, Illinois, USA, pp. 172–179. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  28. 28.
    Shah, M.A., Madden, S., Franklin, M.J., Hellerstein, J.M.: Java support for dataintensive systems: Experiences building the Telegraph dataflow system. SIGMOD Record 30(4), 103–114 (2001)CrossRefGoogle Scholar
  29. 29.
    Shahabi, C.: AIMS: an Immersidata management system. In: Proc. 1st Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA (January 2003) (online proceedings)Google Scholar
  30. 30.
    Smith, W.: A system for monitoring and management of computational Grids. In: Proc. 31st International Conference on Parallel Processing, Vancouver, Canada, IEEE Computer Society, Los Alamitos (2002)Google Scholar
  31. 31.
    Sullivan, M.: Tribeca: A stream database manager for network traffic analysis. In: Proc. 22nd International Conference on Very Large Data Bases, Bombay, India, p. 594. Morgan Kaufmann Publishers, San Francisco (1996)Google Scholar
  32. 32.
    Sutherland, T., Rundensteiner, E.A.: D-CAPE: A self-tuning continuous query plan distribution architecture. Technical Report WPI-CS-TR-04-18, Worcester Polytechnic Institute, Worcester (Mass, USA) (April 2004)Google Scholar
  33. 33.
    Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.: A Grid monitoring architecture. In: Global Grid Forum Performance Working Group (March 2000) (Revised January 2002)Google Scholar
  34. 34.
    Ullman, J.D.: Information integration using logical views. In: Proc. 6th International Conference on Database Theory, Delphi, Greece. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1997)Google Scholar
  35. 35.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer 25(3), 38–49 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andy Cooke
    • 1
  • Alasdair J. G. Gray
    • 1
  • Werner Nutt
    • 1
  1. 1.School of Mathematical and Computer SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations